Visible to the public Biblio

Filters: Keyword is security data  [Clear All Filters]
2020-08-24
Gupta, Nitika, Traore, Issa, de Quinan, Paulo Magella Faria.  2019.  Automated Event Prioritization for Security Operation Center using Deep Learning. 2019 IEEE International Conference on Big Data (Big Data). :5864–5872.
Despite their popularity, Security Operation Centers (SOCs) are facing increasing challenges and pressure due to the growing volume, velocity and variety of the IT infrastructure and security data observed on a daily basis. Due to the mixed performance of current technological solutions, e.g. IDS and SIEM, there is an over-reliance on manual analysis of the events by human security analysts. This creates huge backlogs and slow down considerably the resolution of critical security events. Obvious solutions include increasing accuracy and efficiency in the automation of crucial aspects of the SOC workflow, such as the event classification and prioritization. In the current paper, we present a new approach for SOC event classification by identifying a set of new features using graphical analysis and classifying using a deep neural network model. Experimental evaluation using real SOC event log data yields very encouraging results in terms of classification accuracy.
2020-02-17
Skopik, Florian, Filip, Stefan.  2019.  Design principles for national cyber security sensor networks: Lessons learned from small-scale demonstrators. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
The timely exchange of information on new threats and vulnerabilities has become a cornerstone of effective cyber defence in recent years. Especially national authorities increasingly assume their role as information brokers through national cyber security centres and distribute warnings on new attack vectors and vital recommendations on how to mitigate them. Although many of these initiatives are effective to some degree, they also suffer from severe limitations. Many steps in the exchange process require extensive human involvement to manually review, vet, enrich, analyse and distribute security information. Some countries have therefore started to adopt distributed cyber security sensor networks to enable the automatic collection, analysis and preparation of security data and thus effectively overcome limiting scalability factors. The basic idea of IoC-centric cyber security sensor networks is that the national authorities distribute Indicators of Compromise (IoCs) to organizations and receive sightings in return. This effectively helps them to estimate the spreading of malware, anticipate further trends of spreading and derive vital findings for decision makers. While this application case seems quite simple, there are some tough questions to be answered in advance, which steer the further design decisions: How much can the monitored organization be trusted to be a partner in the search for malware? How much control of the scanning process should be delegated to the organization? What is the right level of search depth? How to deal with confidential indicators? What can be derived from encrypted traffic? How are new indicators distributed, prioritized, and scan targets selected in a scalable manner? What is a good strategy to re-schedule scans to derive meaningful data on trends, such as rate of spreading? This paper suggests a blueprint for a sensor network and raises related questions, outlines design principles, and discusses lessons learned from small-scale pilots.
2019-06-10
Farooq, H. M., Otaibi, N. M..  2018.  Optimal Machine Learning Algorithms for Cyber Threat Detection. 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). :32-37.

With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.

2018-04-11
Vasile, D. C., Svasta, P., Codreanu, N., Safta, M..  2017.  Active Tamper Detection Circuit Based on the Analysis of Pulse Response in Conductive Mesh. 2017 40th International Spring Seminar on Electronics Technology (ISSE). :1–6.

Tamper detection circuits provide the first and most important defensive wall in protecting electronic modules containing security data. A widely used procedure is to cover the entire module with a foil containing fine conductive mesh, which detects intrusion attempts. Detection circuits are further classified as passive or active. Passive circuits have the advantage of low power consumption, however they are unable to detect small variations in the conductive mesh parameters. Since modern tools provide an upper leverage over the passive method, the most efficient way to protect security modules is thus to use active circuits. The active tamper detection circuits are typically probing the conductive mesh with short pulses, analyzing its response in terms of delay and shape. The method proposed in this paper generates short pulses at one end of the mesh and analyzes the response at the other end. Apart from measuring pulse delay, the analysis includes a frequency domain characterization of the system, determining whether there has been an intrusion or not, by comparing it to a reference (un-tampered with) spectrum. The novelty of this design is the combined analysis, in time and frequency domains, of the small variations in mesh characteristic parameters.