Biblio
With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.
Tamper detection circuits provide the first and most important defensive wall in protecting electronic modules containing security data. A widely used procedure is to cover the entire module with a foil containing fine conductive mesh, which detects intrusion attempts. Detection circuits are further classified as passive or active. Passive circuits have the advantage of low power consumption, however they are unable to detect small variations in the conductive mesh parameters. Since modern tools provide an upper leverage over the passive method, the most efficient way to protect security modules is thus to use active circuits. The active tamper detection circuits are typically probing the conductive mesh with short pulses, analyzing its response in terms of delay and shape. The method proposed in this paper generates short pulses at one end of the mesh and analyzes the response at the other end. Apart from measuring pulse delay, the analysis includes a frequency domain characterization of the system, determining whether there has been an intrusion or not, by comparing it to a reference (un-tampered with) spectrum. The novelty of this design is the combined analysis, in time and frequency domains, of the small variations in mesh characteristic parameters.