Visible to the public Biblio

Found 143 results

Filters: Keyword is Kernel  [Clear All Filters]
2020-09-08
Mavridis, Ilias, Karatza, Helen.  2019.  Lightweight Virtualization Approaches for Software-Defined Systems and Cloud Computing: An Evaluation of Unikernels and Containers. 2019 Sixth International Conference on Software Defined Systems (SDS). :171–178.
Software defined systems use virtualization technologies to provide an abstraction of the hardware infrastructure at different layers. Ultimately, the adoption of software defined systems in all cloud infrastructure components will lead to Software Defined Cloud Computing. Nevertheless, virtualization has already been used for years and is a key element of cloud computing. Traditionally, virtual machines are deployed in cloud infrastructure and used to execute applications on common operating systems. New lightweight virtualization technologies, such as containers and unikernels, appeared later to improve resource efficiency and facilitate the decomposition of big monolithic applications into multiple, smaller services. In this work, we present and empirically evaluate four popular unikernel technologies, Docker containers and Docker LinuxKit. We deployed containers both on bare metal and on virtual machines. To fairly evaluate their performance, we created similar applications for unikernels and containers. Additionally, we deployed full-fledged database applications ported on both virtualization technologies. Although in bibliography there are a few studies which compare unikernels and containers, in our study for the first time, we provide a comprehensive performance evaluation of clean-slate and legacy unikernels, Docker containers and Docker LinuxKit.
2020-09-04
Tian, Dave Jing, Hernandez, Grant, Choi, Joseph I., Frost, Vanessa, Johnson, Peter C., Butler, Kevin R. B..  2019.  LBM: A Security Framework for Peripherals within the Linux Kernel. 2019 IEEE Symposium on Security and Privacy (SP). :967—984.

Modern computer peripherals are diverse in their capabilities and functionality, ranging from keyboards and printers to smartphones and external GPUs. In recent years, peripherals increasingly connect over a small number of standardized communication protocols, including USB, Bluetooth, and NFC. The host operating system is responsible for managing these devices; however, malicious peripherals can request additional functionality from the OS resulting in system compromise, or can craft data packets to exploit vulnerabilities within OS software stacks. Defenses against malicious peripherals to date only partially cover the peripheral attack surface and are limited to specific protocols (e.g., USB). In this paper, we propose Linux (e)BPF Modules (LBM), a general security framework that provides a unified API for enforcing protection against malicious peripherals within the Linux kernel. LBM leverages the eBPF packet filtering mechanism for performance and extensibility and we provide a high-level language to facilitate the development of powerful filtering functionality. We demonstrate how LBM can provide host protection against malicious USB, Bluetooth, and NFC devices; we also instantiate and unify existing defenses under the LBM framework. Our evaluation shows that the overhead introduced by LBM is within 1 μs per packet in most cases, application and system overhead is negligible, and LBM outperforms other state-of-the-art solutions. To our knowledge, LBM is the first security framework designed to provide comprehensive protection against malicious peripherals within the Linux kernel.

Wajahat, Ahsan, Imran, Azhar, Latif, Jahanzaib, Nazir, Ahsan, Bilal, Anas.  2019.  A Novel Approach of Unprivileged Keylogger Detection. 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1—6.
Nowadays, computers are used everywhere to carry out daily routine tasks. The input devices i.e. keyboard or mouse are used to feed input to computers. The surveillance of input devices is much important as monitoring the users logging activity. A keylogger also referred as a keystroke logger, is a software or hardware device which monitors every keystroke typed by a user. Keylogger runs in the background that user cannot identify its presence. It can be used as monitoring software for parents to keep an eye on children activity on computers and for the owner to monitor their employees. A keylogger (which can be either spyware or software) is a kind of surveillance software that has the ability to store every keystroke in a log file. It is very dangerous for those systems which use their system for daily transaction purpose i.e. Online Banking Systems. A keylogger is a tool, made to save all the keystroke generated through the machine which sanctions hackers to steal sensitive information without user's intention. Privileged also relies on the access for both implementation and placement by Kernel keylogger, the entire message transmitted from the keyboard drivers, while the programmer simply relies on kernel level facilities that interrupt. This certainly needs a large power and expertise for real and error-free execution. However, it has been observed that 90% of the current keyloggers are running in userspace so they do not need any permission for execution. Our aim is focused on detecting userspace keylogger. Our intention is to forbid userspace keylogger from stealing confidential data and information. For this purpose, we use a strategy which is clearly based on detection manner techniques for userspace keyloggers, an essential category of malware packages. We intend to achieve this goal by matching I/O of all processes with some simulated activity of the user, and we assert detection in case the two are highly correlated. The rationale behind this is that the more powerful stream of keystrokes, the more I/O operations are required by the keylogger to log the keystrokes into the file.
2020-08-17
Yao, Yepeng, Su, Liya, Lu, Zhigang, Liu, Baoxu.  2019.  STDeepGraph: Spatial-Temporal Deep Learning on Communication Graphs for Long-Term Network Attack Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :120–127.
Network communication data are high-dimensional and spatiotemporal, and their information content is often degraded by common traffic analysis methods. For long-term network attack detection based on network flows, it is important to extract a discriminative, high-dimensional intrinsic representation of such flows. This work focuses on a hybrid deep neural network design using a combination of a convolutional neural network (CNN) and long short-term memory (LSTM) with graph similarity measures to learn high-dimensional representations from the network traffic. In particular, examining a set of network flows, we commence by constructing a temporal communication graph and then computing graph kernel matrices. Having obtained the kernel matrices, for each graph, we use the kernel value between graphs and calculate graph characterization vectors by graph signal processing. This vector can be regarded as a kernel-based similarity embedding vector of the graph that integrates structural similarity information and leverages efficient graph kernel using the graph Laplacian matrix. Our approach exploits graph structures as the additional prior information, the graph Laplacian matrix for feature extraction and hybrid deep learning models for long-term information learning on communication graphs. Experiments on two real-world network attack datasets show that our approach can extract more discriminative representations, leading to an improved accuracy in a supervised classification task. The experimental results show that our method increases the overall accuracy by approximately 10%-15%.
2020-08-13
Basyoni, Lamiaa, Erbad, Aiman, Alsabah, Mashael, Fetais, Noora, Guizani, Mohsen.  2019.  Empirical Performance Evaluation of QUIC Protocol for Tor Anonymity Network. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :635—642.
Tor's anonymity network is one of the most widely used anonymity networks online, it consists of thousands of routers run by volunteers. Tor preserves the anonymity of its users by relaying the traffic through a number of routers (called onion routers) forming a circuit. The current design of Tor's transport layer suffers from a number of problems affecting the performance of the network. Several researches proposed changes in the transport design in order to eliminate the effect of these problems and improve the performance of Tor's network. In this paper. we propose "QuicTor", an improvement to the transport layer of Tor's network by using Google's protocol "QUIC" instead of TCP. QUIC was mainly developed to eliminate TCP's latency introduced from the handshaking delays and the head-of-line blocking problem. We provide an empirical evaluation of our proposed design and compare it to two other proposed designs, IMUX and PCTCP. We show that QuicTor significantly enhances the performance of Tor's network.
2020-08-03
Li, Guanyu, Zhang, Menghao, Liu, Chang, Kong, Xiao, Chen, Ang, Gu, Guofei, Duan, Haixin.  2019.  NETHCF: Enabling Line-rate and Adaptive Spoofed IP Traffic Filtering. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–12.
In this paper, we design NETHCF, a line-rate in-network system for filtering spoofed traffic. NETHCF leverages the opportunity provided by programmable switches to design a novel defense against spoofed IP traffic, and it is highly efficient and adaptive. One key challenge stems from the restrictions of the computational model and memory resources of programmable switches. We address this by decomposing the HCF system into two complementary components-one component for the data plane and another for the control plane. We also aggregate the IP-to-Hop-Count (IP2HC) mapping table for efficient memory usage, and design adaptive mechanisms to handle end-to-end routing changes, IP popularity changes, and network activity dynamics. We have built a prototype on a hardware Tofino switch, and our evaluation demonstrates that NETHCF can achieve line-rate and adaptive traffic filtering with low overheads.
2020-07-30
Kellner, Ansgar, Horlboge, Micha, Rieck, Konrad, Wressnegger, Christian.  2019.  False Sense of Security: A Study on the Effectivity of Jailbreak Detection in Banking Apps. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :1—14.
People increasingly rely on mobile devices for banking transactions or two-factor authentication (2FA) and thus trust in the security provided by the underlying operating system. Simultaneously, jailbreaks gain tremendous popularity among regular users for customizing their devices. In this paper, we show that both do not go well together: Jailbreaks remove vital security mechanisms, which are necessary to ensure a trusted environment that allows to protect sensitive data, such as login credentials and transaction numbers (TANs). We find that all but one banking app, available in the iOS App Store, can be fully compromised by trivial means without reverse-engineering, manipulating the app, or other sophisticated attacks. Even worse, 44% of the banking apps do not even try to detect jailbreaks, revealing the prevalent, errant trust in the operating system's security. This study assesses the current state of security of banking apps and pleads for more advanced defensive measures for protecting user data.
2020-07-27
Liu, Xianyu, Zheng, Min, Pan, Aimin, Lu, Quan.  2018.  Hardening the Core: Understanding and Detection of XNU Kernel Vulnerabilities. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :10–13.
The occurrence of security vulnerabilities in kernel, especially for macOS/iOS kernel XNU, has increased rapidly in recent years. Naturally, concerns were raised due to the high risks they would lead to, which in general are much more serious than common application vulnerabilities. However, discovering XNU kernel vulnerabilities is always very challenging, and the main approach in practice is still manual analysis, which obviously is not a scalable method. In this paper, we perform an in-depth empirical study on the 406 published XNU kernel vulnerabilities to identify distinguishing characteristics of them and then leverage the features to guide our vulnerability detection, i.e., locating suspicious functions. To further improve the efficiency of vulnerability detection, we present KInspector, a new and lightweight framework to detect XNU kernel vulnerabilities by leveraging feedback-based fuzzing techniques. We thoroughly evaluate our approach on XNU with various versions, and the results turn out to be quite promising: 21 N/0-day vulnerabilities have been discovered in our experiments.
Galuppo, Raúl Ignacio, Luna, Carlos, Betarte, Gustavo.  2018.  Security in iOS and Android: A Comparative Analysis. 2018 37th International Conference of the Chilean Computer Science Society (SCCC). :1–8.
This paper presents a detailed analysis of some relevant security features of iOS and Android -the two most popular operating systems for mobile devices- from the perspective of user privacy. In particular, permissions that can be modified at run time on these platforms are analyzed. Additionally, a framework is introduced for permission analysis, a hybrid mobile application that can run on both iOS and Android. The framework, which can be extended, places special emphasis on the relationship between the user's privacy and the permission system.
Vöelp, Marcus, Esteves-Verissimo, Paulo.  2018.  Intrusion-Tolerant Autonomous Driving. 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC). :130–133.
Fully autonomous driving is one if not the killer application for the upcoming decade of real-time systems. However, in the presence of increasingly sophisticated attacks by highly skilled and well equipped adversarial teams, autonomous driving must not only guarantee timeliness and hence safety. It must also consider the dependability of the software concerning these properties while the system is facing attacks. For distributed systems, fault-and-intrusion tolerance toolboxes already offer a few solutions to tolerate partial compromise of the system behind a majority of healthy components operating in consensus. In this paper, we present a concept of an intrusion-tolerant architecture for autonomous driving. In such a scenario, predictability and recovery challenges arise from the inclusion of increasingly more complex software on increasingly less predictable hardware. We highlight how an intrusion tolerant design can help solve these issues by allowing timeliness to emerge from a majority of complex components being fast enough, often enough while preserving safety under attack through pre-computed fail safes.
2020-07-20
Guelton, Serge, Guinet, Adrien, Brunet, Pierrick, Martinez, Juan Manuel, Dagnat, Fabien, Szlifierski, Nicolas.  2018.  [Research Paper] Combining Obfuscation and Optimizations in the Real World. 2018 IEEE 18th International Working Conference on Source Code Analysis and Manipulation (SCAM). :24–33.
Code obfuscation is the de facto standard to protect intellectual property when delivering code in an unmanaged environment. It relies on additive layers of code tangling techniques, white-box encryption calls and platform-specific or tool-specific countermeasures to make it harder for a reverse engineer to access critical pieces of data or to understand core algorithms. The literature provides plenty of different obfuscation techniques that can be used at compile time to transform data or control flow in order to provide some kind of protection against different reverse engineering scenarii. Scheduling code transformations to optimize a given metric is known as the pass scheduling problem, a problem known to be NP-hard, but solved in a practical way using hard-coded sequences that are generally satisfactory. Adding code obfuscation to the problem introduces two new dimensions. First, as a code obfuscator needs to find a balance between obfuscation and performance, pass scheduling becomes a multi-criteria optimization problem. Second, obfuscation passes transform their inputs in unconventional ways, which means some pass combinations may not be desirable or even valid. This paper highlights several issues met when blindly chaining different kind of obfuscation and optimization passes, emphasizing the need of a formal model to combine them. It proposes a non-intrusive formalism to leverage on sequential pass management techniques. The model is validated on real-world scenarii gathered during the development of an industrial-strength obfuscator on top of the LLVM compiler infrastructure.
2020-07-16
Ayub, Md. Ahsan, Smith, Steven, Siraj, Ambareen.  2019.  A Protocol Independent Approach in Network Covert Channel Detection. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :165—170.

Network covert channels are used in various cyberattacks, including disclosure of sensitive information and enabling stealth tunnels for botnet commands. With time and technology, covert channels are becoming more prevalent, complex, and difficult to detect. The current methods for detection are protocol and pattern specific. This requires the investment of significant time and resources into application of various techniques to catch the different types of covert channels. This paper reviews several patterns of network storage covert channels, describes generation of network traffic dataset with covert channels, and proposes a generic, protocol-independent approach for the detection of network storage covert channels using a supervised machine learning technique. The implementation of the proposed generic detection model can lead to a reduction of necessary techniques to prevent covert channel communication in network traffic. The datasets we have generated for experimentation represent storage covert channels in the IP, TCP, and DNS protocols and are available upon request for future research in this area.

2020-07-06
Ben, Yongming, Han, Yanni, Cai, Ning, An, Wei, Xu, Zhen.  2019.  An Online System Dependency Graph Anomaly Detection based on Extended Weisfeiler-Lehman Kernel. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Modern operating systems are typical multitasking systems: Running multiple tasks at the same time. Therefore, a large number of system calls belonging to different processes are invoked at the same time. By associating these invocations, one can construct the system dependency graph. In rapidly evolving system dependency graphs, how to quickly find outliers is an urgent issue for intrusion detection. Clustering analysis based on graph similarity will help solve this problem. In this paper, an extended Weisfeiler-Lehman(WL) kernel is proposed. Firstly, an embedded vector with indefinite dimensions is constructed based on the original dependency graph. Then, the vector is compressed with Simhash to generate a fingerprint. Finally, anomaly detection based on clustering is carried out according to these fingerprints. Our scheme can achieve prominent detection with high efficiency. For validation, we choose StreamSpot, a relevant prior work, to act as benchmark, and use the same data set as it to carry out evaluations. Experiments show that our scheme can achieve the highest detection precision of 98% while maintaining a perfect recall performance. Moreover, both quantitative and visual comparisons demonstrate the outperforming clustering effect of our scheme than StreamSpot.
2020-06-03
Qawasmeh, Ethar, Al-Saleh, Mohammed I., Al-Sharif, Ziad A..  2019.  Towards a Generic Approach for Memory Forensics. 2019 Sixth HCT Information Technology Trends (ITT). :094—098.

The era of information technology has, unfortunately, contributed to the tremendous rise in the number of criminal activities. However, digital artifacts can be utilized in convicting cybercriminal and exposing their activities. The digital forensics science concerns about all aspects related to cybercrimes. It seeks digital evidence by following standard methodologies to be admitted in court rooms. This paper concerns about memory forensics for the unique artifacts it holds. Memory contains information about the current state of systems and applications. Moreover, an application's data explains how a criminal has been interacting the application just before the memory is acquired. Memory forensics at the application level is currently random and cumbersome. Targeting specific applications is what forensic researchers and practitioner are currently striving to provide. This paper suggests a general solution to investigate any application. Our solution aims to utilize an application's data structures and variables' information in the investigation process. This is because an application's data has to be stored and retrieved in the means of variables. Data structures and variables' information can be generated by compilers for debugging purposes. We show that an application's information is a valuable resource to the investigator.

2020-05-11
Cui, Zhicheng, Zhang, Muhan, Chen, Yixin.  2018.  Deep Embedding Logistic Regression. 2018 IEEE International Conference on Big Knowledge (ICBK). :176–183.
Logistic regression (LR) is used in many areas due to its simplicity and interpretability. While at the same time, those two properties limit its classification accuracy. Deep neural networks (DNNs), instead, achieve state-of-the-art performance in many domains. However, the nonlinearity and complexity of DNNs make it less interpretable. To balance interpretability and classification performance, we propose a novel nonlinear model, Deep Embedding Logistic Regression (DELR), which augments LR with a nonlinear dimension-wise feature embedding. In DELR, each feature embedding is learned through a deep and narrow neural network and LR is attached to decide feature importance. A compact and yet powerful model, DELR offers great interpretability: it can tell the importance of each input feature, yield meaningful embedding of categorical features, and extract actionable changes, making it attractive for tasks such as market analysis and clinical prediction.
Khan, Riaz Ullah, Zhang, Xiaosong, Alazab, Mamoun, Kumar, Rajesh.  2019.  An Improved Convolutional Neural Network Model for Intrusion Detection in Networks. 2019 Cybersecurity and Cyberforensics Conference (CCC). :74–77.

Network intrusion detection is an important component of network security. Currently, the popular detection technology used the traditional machine learning algorithms to train the intrusion samples, so as to obtain the intrusion detection model. However, these algorithms have the disadvantage of low detection rate. Deep learning is more advanced technology that automatically extracts features from samples. In view of the fact that the accuracy of intrusion detection is not high in traditional machine learning technology, this paper proposes a network intrusion detection model based on convolutional neural network algorithm. The model can automatically extract the effective features of intrusion samples, so that the intrusion samples can be accurately classified. Experimental results on KDD99 datasets show that the proposed model can greatly improve the accuracy of intrusion detection.

2020-05-08
Wu, Peilun, Guo, Hui.  2019.  LuNet: A Deep Neural Network for Network Intrusion Detection. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :617—624.

Network attack is a significant security issue for modern society. From small mobile devices to large cloud platforms, almost all computing products, used in our daily life, are networked and potentially under the threat of network intrusion. With the fast-growing network users, network intrusions become more and more frequent, volatile and advanced. Being able to capture intrusions in time for such a large scale network is critical and very challenging. To this end, the machine learning (or AI) based network intrusion detection (NID), due to its intelligent capability, has drawn increasing attention in recent years. Compared to the traditional signature-based approaches, the AI-based solutions are more capable of detecting variants of advanced network attacks. However, the high detection rate achieved by the existing designs is usually accompanied by a high rate of false alarms, which may significantly discount the overall effectiveness of the intrusion detection system. In this paper, we consider the existence of spatial and temporal features in the network traffic data and propose a hierarchical CNN+RNN neural network, LuNet. In LuNet, the convolutional neural network (CNN) and the recurrent neural network (RNN) learn input traffic data in sync with a gradually increasing granularity such that both spatial and temporal features of the data can be effectively extracted. Our experiments on two network traffic datasets show that compared to the state-of-the-art network intrusion detection techniques, LuNet not only offers a high level of detection capability but also has a much low rate of false positive-alarm.

2020-05-04
Su, Liya, Yao, Yepeng, Lu, Zhigang, Liu, Baoxu.  2019.  Understanding the Influence of Graph Kernels on Deep Learning Architecture: A Case Study of Flow-Based Network Attack Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :312–318.
Flow-based network attack detection technology is able to identify many threats in network traffic. Existing techniques have several drawbacks: i) rule-based approaches are vulnerable because it needs all the signatures defined for the possible attacks, ii) anomaly-based approaches are not efficient because it is easy to find ways to launch attacks that bypass detection, and iii) both rule-based and anomaly-based approaches heavily rely on domain knowledge of networked system and cyber security. The major challenge to existing methods is to understand novel attack scenarios and design a model to detect novel and more serious attacks. In this paper, we investigate network attacks and unveil the key activities and the relationships between these activities. For that reason, we propose methods to understand the network security practices using theoretic concepts such as graph kernels. In addition, we integrate graph kernels over deep learning architecture to exploit the relationship expressiveness among network flows and combine ability of deep neural networks (DNNs) with deep architectures to learn hidden representations, based on the communication representation graph of each network flow in a specific time interval, then the flow-based network attack detection can be done effectively by measuring the similarity between the graphs to two flows. The proposed study provides the effectiveness to obtain insights about network attacks and detect network attacks. Using two real-world datasets which contain several new types of network attacks, we achieve significant improvements in accuracies over existing network attack detection tasks.
2020-04-17
Tian, Donghai, Ma, Rui, Jia, Xiaoqi, Hu, Changzhen.  2019.  A Kernel Rootkit Detection Approach Based on Virtualization and Machine Learning. IEEE Access. 7:91657—91666.

OS kernel is the core part of the operating system, and it plays an important role for OS resource management. A popular way to compromise OS kernel is through a kernel rootkit (i.e., malicious kernel module). Once a rootkit is loaded into the kernel space, it can carry out arbitrary malicious operations with high privilege. To defeat kernel rootkits, many approaches have been proposed in the past few years. However, existing methods suffer from some limitations: 1) most methods focus on user-mode rootkit detection; 2) some methods are limited to detect obfuscated kernel modules; and 3) some methods introduce significant performance overhead. To address these problems, we propose VKRD, a kernel rootkit detection system based on the hardware assisted virtualization technology. Compared with previous methods, VKRD can provide a transparent and an efficient execution environment for the target kernel module to reveal its run-time behavior. To select the important run-time features for training our detection models, we utilize the TF-IDF method. By combining the hardware assisted virtualization and machine learning techniques, our kernel rootkit detection solution could be potentially applied in the cloud environment. The experiments show that our system can detect windows kernel rootkits with high accuracy and moderate performance cost.

Yang, Zihan, Mi, Zeyu, Xia, Yubin.  2019.  Undertow: An Intra-Kernel Isolation Mechanism for Hardware-Assisted Virtual Machines. 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). :257—2575.
The prevalence of Cloud Computing has appealed many users to put their business into low-cost and flexible cloud servers instead of bare-metal machines. Most virtual machines in the cloud run commodity operating system(e.g., linux), and the complexity of such operating systems makes them more bug-prone and easier to be compromised. To mitigate the security threats, previous works attempt to mediate and filter system calls, transform all unpopular paths into popular paths, or implement a nested kernel along with the untrusted outter kernel to enforce certain security policies. However, such solutions only enforce read-only protection or assume that popular paths in the kernel to contain almost no bug, which is not always the case in the real world. To overcome their shortcomings and combine their advantages as much as possible, we propose a hardware-assisted isolation mechanism that isolates untrusted part of the kernel. To achieve isolation, we prepare multiple restricted Extended Page Table (EPT) during boot time, each of which has certain critical data unmapped from it so that the code executing in the isolated environment could not access sensitive data. We leverage the VMFUNC instruction already available in recent Intel processors to directly switch to another pre-defined EPT inside guest virtual machine without trapping into the underlying hypervisor, which is faster than the traditional trap-and-emulate procedure. The semantic gap is minimized and real-time check is achieved by allowing EPT violations to be converted to Virtualization Exception (VE), which could be handled inside guest kernel in non-root mode. Our preliminary evaluation shows that with hardware virtualization feature, we are able to run the untrusted code in an isolated environment with negligible overhead.
Liu, Sihang, Wei, Yizhou, Chi, Jianfeng, Shezan, Faysal Hossain, Tian, Yuan.  2019.  Side Channel Attacks in Computation Offloading Systems with GPU Virtualization. 2019 IEEE Security and Privacy Workshops (SPW). :156—161.

The Internet of Things (IoT) and mobile systems nowadays are required to perform more intensive computation, such as facial detection, image recognition and even remote gaming, etc. Due to the limited computation performance and power budget, it is sometimes impossible to perform these workloads locally. As high-performance GPUs become more common in the cloud, offloading the computation to the cloud becomes a possible choice. However, due to the fact that offloaded workloads from different devices (belonging to different users) are being computed in the same cloud, security concerns arise. Side channel attacks on GPU systems have been widely studied, where the threat model is the attacker and the victim are running on the same operating system. Recently, major GPU vendors have provided hardware and library support to virtualize GPUs for better isolation among users. This work studies the side channel attacks from one virtual machine to another where both share the same physical GPU. We show that it is possible to infer other user's activities in this setup and can further steal others deep learning model.

2020-04-13
Shahbaz, Ajmal, Hoang, Van-Thanh, Jo, Kang-Hyun.  2019.  Convolutional Neural Network based Foreground Segmentation for Video Surveillance Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:86–89.
Convolutional Neural Networks (CNN) have shown astonishing results in the field of computer vision. This paper proposes a foreground segmentation algorithm based on CNN to tackle the practical challenges in the video surveillance system such as illumination changes, dynamic backgrounds, camouflage, and static foreground object, etc. The network is trained using the input of image sequences with respective ground-truth. The algorithm employs a CNN called VGG-16 to extract features from the input. The extracted feature maps are upsampled using a bilinear interpolation. The upsampled feature mask is passed through a sigmoid function and threshold to get the foreground mask. Binary cross entropy is used as the error function to compare the constructed foreground mask with the ground truth. The proposed algorithm was tested on two standard datasets and showed superior performance as compared to the top-ranked foreground segmentation methods.
2020-04-03
Cheang, Kevin, Rasmussen, Cameron, Seshia, Sanjit, Subramanyan, Pramod.  2019.  A Formal Approach to Secure Speculation. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :288—28815.
Transient execution attacks like Spectre, Meltdown and Foreshadow have shown that combinations of microarchitectural side-channels can be synergistically exploited to create side-channel leaks that are greater than the sum of their parts. While both hardware and software mitigations have been proposed against these attacks, provable security has remained elusive. This paper introduces a formal methodology for enabling secure speculative execution on modern processors. We propose a new class of information flow security properties called trace property-dependent observational determinism (TPOD). We use this class to formulate a secure speculation property. Our formulation precisely characterises all transient execution vulnerabilities. We demonstrate its applicability by verifying secure speculation for several illustrative programs.
Sattar, Naw Safrin, Arifuzzaman, Shaikh, Zibran, Minhaz F., Sakib, Md Mohiuddin.  2019.  An Ensemble Approach for Suspicious Traffic Detection from High Recall Network Alerts. {2019 IEEE International Conference on Big Data (Big Data. :4299—4308}}@inproceedings{wu_ensemble_2019.
Web services from large-scale systems are prevalent all over the world. However, these systems are naturally vulnerable and incline to be intruded by adversaries for illegal benefits. To detect anomalous events, previous works focus on inspecting raw system logs by identifying the outliers in workflows or relying on machine learning methods. Though those works successfully identify the anomalies, their models use large training set and process whole system logs. To reduce the quantity of logs that need to be processed, high recall suspicious network alert systems can be applied to preprocess system logs. Only the logs that trigger alerts are retrieved for further usage. Due to the universally usage of network traffic alerts among Security Operations Center, anomalies detection problems could be transformed to classify truly suspicious network traffic alerts from false alerts.In this work, we propose an ensemble model to distinguish truly suspicious alerts from false alerts. Our model consists of two sub-models with different feature extraction strategies to ensure the diversity and generalization. We use decision tree based boosters and deep neural networks to build ensemble models for classification. Finally, we evaluate our approach on suspicious network alerts dataset provided by 2019 IEEE BigData Cup: Suspicious Network Event Recognition. Under the metric of AUC scores, our model achieves 0.9068 on the whole testing set.
2020-03-27
Liu, Wenqing, Zhang, Kun, Tu, Bibo, Lin, Kunli.  2019.  HyperPS: A Hypervisor Monitoring Approach Based on Privilege Separation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :981–988.

In monolithic operating system (OS), any error of system software can be exploit to destroy the whole system. The situation becomes much more severe in cloud environment, when the kernel and the hypervisor share the same address space. The security of guest Virtual Machines (VMs), both sensitive data and vital code, can no longer be guaranteed, once the hypervisor is compromised. Therefore, it is essential to deploy some security approaches to secure VMs, regardless of the hypervisor is safe or not. Some approaches propose microhypervisor reducing attack surface, or a new software requiring a higher privilege level than hypervisor. In this paper, we propose a novel approach, named HyperPS, which separates the fundamental and crucial privilege into a new trusted environment in order to monitor hypervisor. A pivotal condition for HyperPS is that hypervisor must not be allowed to manipulate any security-sensitive system resources, such as page tables, system control registers, interaction between VM and hypervisor as well as VM memory mapping. Besides, HyperPS proposes a trusted environment which does not rely on any higher privilege than the hypervisor. We have implemented a prototype for KVM hypervisor on x86 platform with multiple VMs running Linux. KVM with HyperPS can be applied to current commercial cloud computing industry with portability. The security analysis shows that this approach can provide effective monitoring against attacks, and the performance evaluation confirms the efficiency of HyperPS.