Biblio
Botnets are a growing threat to the security of data and services on a global level. They exploit vulnerabilities in networks and host machines to harvest sensitive information, or make use of network resources such as memory or bandwidth in cyber-crime campaigns. Bot programs by nature are largely automated and systematic, and this is often used to detect them. In this paper, we extend upon existing work in this area by proposing a network event correlation method to produce graphs of flows generated by botnets, outlining the implementation and functionality of this approach. We also show how this method can be combined with statistical flow-based analysis to provide a descriptive chain of events, and test on public datasets with an overall success rate of 94.1%.
Distributed attacks originating from botnet-infected machines (bots) such as large-scale malware propagation campaigns orchestrated via spam emails can quickly affect other network infrastructures. As these attacks are made successful only by the fact that hundreds of infected machines engage in them collectively, their damage can be avoided if machines infected with a common botnet can be detected early rather than after an attack is launched. Prior studies have suggested that outgoing bot attacks are often preceded by other ``tell-tale'' malicious behaviour, such as communication with botnet controllers (C&C servers) that command botnets to carry out attacks. We postulate that observing similar behaviour occuring in a synchronised manner across multiple machines is an early indicator of a widespread infection of a single botnet, leading potentially to a large-scale, distributed attack. Intuitively, if we can detect such synchronised behaviour early enough on a few machines in the network, we can quickly contain the threat before an attack does any serious damage. In this work we present a measurement-driven analysis to validate this intuition. We empirically analyse the various stages of malicious behaviour that are observed in real botnet traffic, and carry out the first systematic study of the network behaviour that typically precedes outgoing bot attacks and is synchronised across multiple infected machines. We then implement as a proof-of-concept a set of analysers that monitor synchronisation in botnet communication to generate early infection and attack alerts. We show that with this approach, we can quickly detect nearly 80% of real-world spamming and port scanning attacks, and even demonstrate a novel capability of preventing these attacks altogether by predicting them before they are launched.