Visible to the public Biblio

Filters: Keyword is programmable logic arrays  [Clear All Filters]
2023-04-14
Liu, Xiya.  2022.  Information Encryption Security System Based on Chaos Algorithm. 2022 7th International Conference on Cyber Security and Information Engineering (ICCSIE). :128–131.
Chaotic cryptography is structurally related to the concepts of confusion and diffusion in traditional cryptography theory. Chaotic cryptography is formed by the inevitable connection between chaos theory and pure cryptography. In order to solve the shortcomings of the existing research on information encryption security system, this paper discusses the realization technology of information security, the design principles of encryption system and three kinds of chaotic mapping systems, and discusses the selection of development tools and programmable devices. And the information encryption security system based on chaos algorithm is designed and discussed, and the randomness test of three groups of encrypted files is carried out by the proposed algorithm and the AES (Advanced Encryption Standard) algorithm. Experimental data show that the uniformity of P-value value of chaos algorithm is 0.714 on average. Therefore, it is verified that the information encryption security system using chaos algorithm has high security.
2022-12-02
Illi, Elmehdi, Pandey, Anshul, Bariah, Lina, Singh, Govind, Giacalone, Jean-Pierre, Muhaidat, Sami.  2022.  Physical Layer Continuous Authentication for Wireless Mesh Networks: An Experimental Study. 2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom). :136—141.
This paper investigates the robustness of the received signal strength (RSS)-based physical layer authentication (PLA) for wireless mesh networks, through experimental results. Specifically, we develop a secure wireless mesh networking framework and apply the RSS-based PLA scheme, with the aim to perform continuous authentication. The mesh setup comprises three Raspberry-PI4 computing nodes (acting as Alice, Bob, and Eve) and a server. The server role is to perform the initial authentication when a new node joins the mesh network. After that, the legitimate nodes in the mesh network perform continuous authentication, by leveraging the RSS feature of wireless signals. In particular, Bob tries to authenticate Alice in the presence of Eve. The performance of the presented framework is quantified through extensive experimental results in an outdoor environment, where various nodes' positions, relative distances, and pedestrian speeds scenarios are considered. The obtained results demonstrate the robustness of the underlying model, where an authentication rate of 99% for the static case can be achieved. Meanwhile, at the pedestrian speed, the authentication rate can drop to 85%. On the other hand, the detection rate improves when the distance between the legitimate and wiretap links is large (exceeds 20 meters) or when Alice and Eve are moving in different mobility patterns.
2022-03-23
Forssell, Henrik, Thobaben, Ragnar, Gross, James.  2021.  Delay Performance of Distributed Physical Layer Authentication Under Sybil Attacks. ICC 2021 - IEEE International Conference on Communications. :1—7.

Physical layer authentication (PLA) has recently been discussed in the context of URLLC due to its low complexity and low overhead. Nevertheless, these schemes also introduce additional sources of error through missed detections and false alarms. The trade-offs of these characteristics are strongly dependent on the deployment scenario as well as the processing architecture. Thus, considering a feature-based PLA scheme utilizing channel-state information at multiple distributed radio-heads, we study these trade-offs analytically. We model and analyze different scenarios of centralized and decentralized decision-making and decoding, as well as the impacts of a single-antenna attacker launching a Sybil attack. Based on stochastic network calculus, we provide worst-case performance bounds on the system-level delay for the considered distributed scenarios under a Sybil attack. Results show that the arrival-rate capacity for a given latency deadline is increased for the distributed scenarios. For a clustered sensor deployment, we find that the distributed approach provides 23% higher capacity when compared to the centralized scenario.

2021-11-30
Fang, Hao, Zhang, Tao, Cai, Yueming, Zhang, Linyuan, Wu, Hao.  2020.  Detection Schemes of Illegal Spectrum Access Behaviors in Multiple Authorized Users Scenario. 2020 International Conference on Wireless Communications and Signal Processing (WCSP). :933–938.
In this paper, our aim is to detect illegal spectrum access behaviors. Firstly, we detect whether the channel is busy, and then if it is busy, recognizing whether there are illegal users. To get closer to the actual situation, we consider a more general scenario where multiple users are authorized to work on the same channel under certain interference control strategies, and build it as a ternary hypothesis test model using the generalized multi-hypothesis Neyman-Pearson criterion. Considering the various potential combination of multiple authorized users, the spectrum detection process utilizes a two-step detector. We adopt the Generalized Likelihood Ratio Test (GLRT) and the Rao test to detect illegal spectrum access behaviors. What is more, the Wald test is proposed which has a compromise between computational complexity and performance. The relevant formulas of the three detection schemes are derived. Finally, comprehensive and in-depth simulations are provided to verify the effectiveness of the proposed detection scheme that it has the best detection performance under different authorized sample numbers and different performance constraints. Besides, we illustrate the probability of detection of illegal behaviors under different parameters of illegal behaviors and different sets of AUs' states under the Wald test.
2019-12-18
Kania, Elsa B..  2016.  Cyber deterrence in times of cyber anarchy - evaluating the divergences in U.S. and Chinese strategic thinking. 2016 International Conference on Cyber Conflict (CyCon U.S.). :1–17.
The advent of the cyber domain has introduced a new dimension into warfare and complicated existing strategic concepts, provoking divergent responses within different national contexts and strategic cultures. Although current theories regarding cyber deterrence remain relatively nascent, a comparison of U.S. and Chinese strategic thinking highlights notable asymmetries between their respective approaches. While U.S. debates on cyber deterrence have primarily focused on the deterrence of cyber threats, Chinese theorists have also emphasized the potential importance of cyber capabilities to enhance strategic deterrence. Whereas the U.S. government has maintained a consistent declaratory policy for response, Beijing has yet to progress toward transparency regarding its cyber strategy or capabilities. However, certain PLA strategists, informed by a conceptualization of deterrence as integrated with warfighting, have advocated for the actualization of deterrence through engaging in cyber attacks. Regardless of whether these major cyber powers' evolving strategic thinking on cyber deterrence will prove logically consistent or feasibly operational, their respective perspectives will certainly shape their attempts to achieve cyber deterrence. Ultimately, cyber deterrence may continue to be "what states make of it," given conditions of "cyber anarchy" and prevailing uncertainties regarding cyber conflict. Looking forward, future strategic stability in Sino-U.S. cyber interactions will require mitigation of the misperceptions and heightened risks of escalation that could be exacerbated by these divergent strategic approaches.
2019-12-16
Chen, Ping, Yu, Han, Zhao, Min, Wang, Jinshuang.  2018.  Research and Implementation of Cross-site Scripting Defense Method Based on Moving Target Defense Technology. 2018 5th International Conference on Systems and Informatics (ICSAI). :818–822.

The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.

2019-12-05
Mu, Li, Mianquan, Li, Yuzhen, Huang, Hao, Yin, Yan, Wang, Baoquan, Ren, Xiaofei, Qu, Rui, Yu.  2018.  Security Analysis of Overlay Cognitive Wireless Networks with an Untrusted Secondary User. 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1-5.

In this article, we study the transmission secrecy performance of primary user in overlay cognitive wireless networks, in which an untrusted energy-limited secondary cooperative user assists the primary transmission to exchange for the spectrum resource. In the network, the information can be simultaneously transmitted through the direct and relay links. For the enhancement of primary transmission security, a maximum ratio combining (MRC) scheme is utilized by the receiver to exploit the two copies of source information. For the security analysis, we firstly derive the tight lower bound expression for secrecy outage probability (SOP). Then, three asymptotic expressions for SOP are also expressed to further analyze the impacts of the transmit power and the location of secondary cooperative node on the primary user information security. The findings show that the primary user information secrecy performance enhances with the improvement of transmit power. Moreover, the smaller the distance between the secondary node and the destination, the better the primary secrecy performance.

2018-04-11
Alsaiari, U., Gebali, F., Abd-El-Barr, M..  2017.  Programmable Assertion Checkers for Hardware Trojan Detection. 2017 1st Conference on PhD Research in Microelectronics and Electronics Latin America (PRIME-LA). :1–4.

Due to the increase in design complexity and cost of VLSI chips, a number of design houses outsource manufacturing and import designs in a way to reduce the cost. This results in a decrease of the authenticity and security of the manufactured product. Since product development involves outside sources, circuit designers can not guarantee that their hardware has not been altered. It is often possible that attackers include additional hardware in order to gain privileges over the original circuit or cause damage to the product. These added circuits are called ``Hardware Trojans''. In this paper, we investigate introducing necessary modules needed for detection of hardware Trojans. We also introduce necessary programmable logic fabric that can be used in the implementation of the hardware assertion checkers. Our target is to utilize the provided programable fabric in a System on Chip (SoC) and optimize the hardware assertion to cover the detection of most hardware trojans in each core of the target SoC.