Visible to the public Biblio

Filters: Keyword is routing path  [Clear All Filters]
2020-02-26
Thulasiraman, Preetha, Wang, Yizhong.  2019.  A Lightweight Trust-Based Security Architecture for RPL in Mobile IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.

Military communities have come to rely heavily on commercial off the shelf (COTS) standards and technologies for Internet of Things (IoT) operations. One of the major obstacles to military use of COTS IoT devices is the security of data transfer. In this paper, we successfully design and develop a lightweight, trust-based security architecture to support routing in a mobile IoT network. Specifically, we modify the RPL IoT routing algorithm using common security techniques, including a nonce identity value, timestamp, and network whitelist. Our approach allows RPL to select a routing path over a mobile IoT wireless network based on a computed node trust value and average received signal strength indicator (ARSSI) value across network members. We conducted simulations using the Cooja network simulator and Wireshark to validate the algorithm against stipulated threat models. We demonstrate that our algorithm can protect the network against Denial of Service (DoS) and Sybil based identity attacks. We also show that the control overhead required for our algorithm is less than 5% and that the packet delivery rate improves by nearly 10%.

2018-06-20
Li, T., Ma, J., Sun, C., Wei, D., Xi, N..  2017.  PVad: Privacy-Preserving Verification for Secure Routing in Ad Hoc Networks. 2017 International Conference on Networking and Network Applications (NaNA). :5–10.

Routing security has a great importance to the security of Mobile Ad Hoc Networks (MANETs). There are various kinds of attacks when establishing routing path between source and destination. The adversaries attempt to deceive the source node and get the privilege of data transmission. Then they try to launch the malicious behaviors such as passive or active attacks. Due to the characteristics of the MANETs, e.g. dynamic topology, open medium, distributed cooperation, and constrained capability, it is difficult to verify the behavior of nodes and detect malicious nodes without revealing any privacy. In this paper, we present PVad, an approach conducting privacy-preserving verification in the routing discovery phase of MANETs. PVad tries to find the existing communication rules by association rules instead of making the rules. PVad consists of two phases, a reasoning phase deducing the expected log data of the peers, and a verification phase using Merkle Hash Tree to verify the correctness of derived information without revealing any privacy of nodes on expected routing paths. Without deploying any special nodes to assist the verification, PVad can detect multiple malicious nodes by itself. To show our approach can be used to guarantee the security of the MANETs, we conduct our experiments in NS3 as well as the real router environment, and we improved the detection accuracy by 4% on average compared to our former work.

2018-04-11
Jedidi, A., Mohammad, A..  2017.  History Trust Routing Algorithm to Improve Efficiency and Security in Wireless Sensor Network. 2017 14th International Multi-Conference on Systems, Signals Devices (SSD). :750–754.

Wireless sensor network (WSN) considered as one of the important technology in our days. Low-cost, low-power and multifunction based on these characteristics WSN become more and more apply in many areas. However, one of the major challenges in WSN is the security. Indeed, the usual method of security cannot be applied in WSN because the technological limit of the different components. In this context, we propose a new method to establish a secure route between the source node and the Sink node. Particularly, our method based on routing trust history table (RTH) and trust path routing algorithm (TPR). Therefore, our method offers a high level of security for the routing path with efficiency and stability in the network.