Visible to the public Biblio

Filters: Keyword is Code injection  [Clear All Filters]
2021-05-05
Lee, Jae-Myeong, Hong, Sugwon.  2020.  Host-Oriented Approach to Cyber Security for the SCADA Systems. 2020 6th IEEE Congress on Information Science and Technology (CiSt). :151—155.
Recent cyberattacks targeting Supervisory Control and Data Acquisition (SCADA)/Industrial Control System(ICS) exploit weaknesses of host system software environment and take over the control of host processes in the host of the station network. We analyze the attack path of these attacks, which features how the attack hijacks the host in the network and compromises the operations of field device controllers. The paper proposes a host-based protection method, which can prevent malware penetration into the process memory by code injection attacks. The method consists of two protection schemes. One is to prevent file-based code injection such as DLL injection. The other is to prevent fileless code injection. The method traces changes in memory regions and determine whether the newly allocated memory is written with malicious codes. For this method, we show how a machine learning method can be adopted.
2020-02-24
De, Asmit, Basu, Aditya, Ghosh, Swaroop, Jaeger, Trent.  2019.  FIXER: Flow Integrity Extensions for Embedded RISC-V. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :348–353.
With the recent proliferation of Internet of Things (IoT) and embedded devices, there is a growing need to develop a security framework to protect such devices. RISC-V is a promising open source architecture that targets low-power embedded devices and SoCs. However, there is a dearth of practical and low-overhead security solutions in the RISC-V architecture. Programs compiled using RISC-V toolchains are still vulnerable to code injection and code reuse attacks such as buffer overflow and return-oriented programming (ROP). In this paper, we propose FIXER, a hardware implemented security extension to RISC-V that provides a defense mechanism against such attacks. FIXER enforces fine-grained control-flow integrity (CFI) of running programs on backward edges (returns) and forward edges (calls) without requiring any architectural modifications to the RISC-V processor core. We implement FIXER on RocketChip, a RISC-V SoC platform, by leveraging the integrated Rocket Custom Coprocessor (RoCC) to detect and prevent attacks. Compared to existing software based solutions, FIXER reduces energy overhead by 60% at minimal execution time (1.5%) and area (2.9%) overheads.
2018-05-02
Korczynski, David, Yin, Heng.  2017.  Capturing Malware Propagations with Code Injections and Code-Reuse Attacks. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1691–1708.
Defending against malware involves analysing large amounts of suspicious samples. To deal with such quantities we rely heavily on automatic approaches to determine whether a sample is malicious or not. Unfortunately, complete and precise automatic analysis of malware is far from an easy task. This is because malware is often designed to contain several techniques and countermeasures specifically to hinder analysis. One of these techniques is for the malware to propagate through the operating system so as to execute in the context of benign processes. The malware does this by writing memory to a given process and then proceeds to have this memory execute. In some cases these propagations are trivial to capture because they rely on well-known techniques. However, in the cases where malware deploys novel code injection techniques, rely on code-reuse attacks and potentially deploy dynamically generated code, the problem of capturing a complete and precise view of the malware execution is non-trivial. In this paper we present a unified approach to tracing malware propagations inside the host in the context of code injections and code-reuse attacks. We also present, to the knowledge of the authors, the first approach to identifying dynamically generated code based on information-flow analysis. We implement our techniques in a system called Tartarus and match Tartarus with both synthetic applications and real-world malware. We compare Tartarus to previous works and show that our techniques substantially improve the precision for collecting malware execution traces, and that our approach can capture intrinsic characteristics of novel code injection techniques.
2015-05-06
Holm, H..  2014.  Signature Based Intrusion Detection for Zero-Day Attacks: (Not) A Closed Chapter? System Sciences (HICSS), 2014 47th Hawaii International Conference on. :4895-4904.

A frequent claim that has not been validated is that signature based network intrusion detection systems (SNIDS) cannot detect zero-day attacks. This paper studies this property by testing 356 severe attacks on the SNIDS Snort, configured with an old official rule set. Of these attacks, 183 attacks are zero-days' to the rule set and 173 attacks are theoretically known to it. The results from the study show that Snort clearly is able to detect zero-days' (a mean of 17% detection). The detection rate is however on overall greater for theoretically known attacks (a mean of 54% detection). The paper then investigates how the zero-days' are detected, how prone the corresponding signatures are to false alarms, and how easily they can be evaded. Analyses of these aspects suggest that a conservative estimate on zero-day detection by Snort is 8.2%.

2015-04-30
Youngjung Ahn, Yongsuk Lee, Jin-Young Choi, Gyungho Lee, Dongkyun Ahn.  2014.  Monitoring Translation Lookahead Buffers to Detect Code Injection Attacks. Computer. 47:66-72.

By identifying memory pages that external I/O operations have modified, a proposed scheme blocks malicious injected code activation, accurately distinguishing an attack from legitimate code injection with negligible performance impact and no changes to the user application.