Visible to the public Biblio

Filters: Keyword is IoT entities  [Clear All Filters]
2020-04-06
Frahat, Rzan Tarig, Monowar, Muhammed Mostafa, Buhari, Seyed M.  2019.  Secure and Scalable Trust Management Model for IoT P2P Network. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
IoT trust management is a security solution that assures the trust between different IoT entities before establishing any relationship with other anonymous devices. Recent researches presented in the literature tend to use a Blockchain-based trust management model for IoT besides the fog node approach in order to address the constraints of IoT resources. Actually, Blockchain has solved many drawbacks of centralized models. However, it is still not preferable for dealing with massive data produced by IoT because of its drawbacks such as delay, network overhead, and scalability issues. Therefore, in this paper we define some factors that should be considered when designing scalable models, and we propose a fully distributed trust management model for IoT that provide a large-scale trust model and address the limitations of Blockchain. We design our model based on a new approach called Holochain considering some security issues, such as detecting misbehaviors, data integrity and availability.
2018-04-11
Lahbib, A., Toumi, K., Elleuch, S., Laouiti, A., Martin, S..  2017.  Link Reliable and Trust Aware RPL Routing Protocol for Internet of Things. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–5.

Internet of Things (IoT) is characterized by heterogeneous devices that interact with each other on a collaborative basis to fulfill a common goal. In this scenario, some of the deployed devices are expected to be constrained in terms of memory usage, power consumption and processing resources. To address the specific properties and constraints of such networks, a complete stack of standardized protocols has been developed, among them the Routing Protocol for Low-Power and lossy networks (RPL). However, this protocol is exposed to a large variety of attacks from the inside of the network itself. To fill this gap, this paper focuses on the design and the integration of a novel Link reliable and Trust aware model into the RPL protocol. Our approach aims to ensure Trust among entities and to provide QoS guarantees during the construction and the maintenance of the network routing topology. Our model targets both node and link Trust and follows a multidimensional approach to enable an accurate Trust value computation for IoT entities. To prove the efficiency of our proposal, this last has been implemented and tested successfully within an IoT environment. Therefore, a set of experiments has been made to show the high accuracy level of our system.