Biblio
In rural/remote areas, resource constrained smart micro-grid (RCSMG) architectures can offer a cost-effective power management and supply alternative to national power grid connections. RCSMG architectures handle communications over distributed lossy networks to minimize operation costs. However, the unreliable nature of lossy networks makes privacy an important consideration. Existing anonymisation works on data perturbation work mainly by distortion with additive noise. Apply these solutions to RCSMGs is problematic, because deliberate noise additions must be distinguishable both from system and adversarial generated noise. In this paper, we present a brief survey of privacy risks in RCSMGs centered on inference, and propose a method of mitigating these risks. The lesson here is that while RCSMGs give users more control over power management and distribution, good anonymisation is essential to protecting personal information on RCSMGs.
Establishing trust relationships between routing nodes represents a vital security requirement to establish reliable routing processes that exclude infected or selfish nodes. In this paper, we propose a new security scheme for the Internet of things and mainly for the RPL (Routing Protocol for Low-power and Lossy Networks) called: Metric-based RPL Trustworthiness Scheme (MRTS). The primary aim is to enhance RPL security and deal with the trust inference problem. MRTS addresses trust issue during the construction and maintenance of routing paths from each node to the BR (Border Router). To handle this issue, we extend DIO (DODAG Information Object) message by introducing a new trust-based metric ERNT (Extended RPL Node Trustworthiness) and a new Objective Function TOF (Trust Objective Function). In fact, ERNT represents the trust values for each node within the network, and TOF demonstrates how ERNT is mapped to path cost. In MRTS all nodes collaborate to calculate ERNT by taking into account nodes' behavior including selfishness, energy, and honesty components. We implemented our scheme by extending the distributed Bellman-Ford algorithm. Evaluation results demonstrated that the new scheme improves the security of RPL.