Visible to the public Biblio

Filters: Keyword is Fasteners  [Clear All Filters]
2022-05-24
Khan, Wazir Zada, Khurram Khan, Muhammad, Arshad, Qurat-ul-Ain, Malik, Hafiz, Almuhtadi, Jalal.  2021.  Digital Labels: Influencing Consumers Trust and Raising Cybersecurity Awareness for Adopting Autonomous Vehicles. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1–4.
Autonomous vehicles (AVs) offer a wide range of promising benefits by reducing traffic accidents, environmental pollution, traffic congestion and land usage etc. However, to reap the intended benefits of AVs, it is inevitable that this technology should be trusted and accepted by the public. The consumer's substantial trust upon AVs will lead to its widespread adoption in the real-life. It is well understood that the preservation of strong security and privacy features influence a consumer's trust on a product in a positive manner. In this paper, we introduce a novel concept of digital labels for AVs to increase consumers awareness and trust regarding the security level of their vehicle. We present an architecture called Cybersecurity Box (CSBox) that leverages digital labels to display and inform consumers and passengers about cybersecurity status of the AV in use. The introduction of cybersecurity digital labels on the dashboard of AVs would attempt to increase the trust level of consumers and passengers on this promising technology.
2022-01-25
Gonsher, Ian, Lei, Zhenhong.  2021.  Prototype of Force Feedback Tool for Mixed Reality Applications. 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). :508—509.
This prototype demonstrates the viability of manipulating both physical and virtual objects with the same tool in order to maintain object permanence across both modes of interaction. Using oppositional force feedback, provided by a servo, and an augmented visual interface, provided by the user’s smartphone, this tool simulates the look and feel of a physical object within an augmented environment. Additionally, the tool is also able to manipulate physical objects that are not part of the augmented reality, such as a physical nut. By integrating both modes of interaction into the same tool, users can fluidly move between these different modes of interaction, manipulating both physical and virtual objects as the need arises. By overlaying this kind of visual and haptic augmentation onto a common tool such as a pair of pliers, we hope to further explore scenarios for collaborative telepresence in future work.
2021-02-03
Rehan, S., Singh, R..  2020.  Industrial and Home Automation, Control, Safety and Security System using Bolt IoT Platform. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :787—793.
This paper describes a system that comprises of control, safety and security subsystem for industries and homes. The entire system is based on the Bolt IoT platform. Using this system, the user can control the devices such as LEDs, speed of the fan or DC motor, monitor the temperature of the premises with an alert sub-system for critical temperatures through SMS and call, monitor the presence of anyone inside the premises with an alert sub-system about any intrusion through SMS and call. If the system is used specifically in any industry then instead of monitoring the temperature any other physical quantity, which is critical for that industry, can be monitored using suitable sensors. In addition, the cloud connectivity is provided to the system using the Bolt IoT module and temperature data is sent to the cloud where using machine-learning algorithm the future temperature is predicted to avoid any accidents in the future.
2018-05-01
Tran, D. T., Waris, M. A., Gabbouj, M., Iosifidis, A..  2017.  Sample-Based Regularization for Support Vector Machine Classification. 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). :1–6.

In this paper, we propose a new regularization scheme for the well-known Support Vector Machine (SVM) classifier that operates on the training sample level. The proposed approach is motivated by the fact that Maximum Margin-based classification defines decision functions as a linear combination of the selected training data and, thus, the variations on training sample selection directly affect generalization performance. We show that the exploitation of the proposed regularization scheme is well motivated and intuitive. Experimental results show that the proposed regularization scheme outperforms standard SVM in human action recognition tasks as well as classical recognition problems.