Visible to the public Biblio

Filters: Keyword is Nesterov's acceleration strategy  [Clear All Filters]
2018-05-01
Wang, X., Zhou, S..  2017.  Accelerated Stochastic Gradient Method for Support Vector Machines Classification with Additive Kernel. 2017 First International Conference on Electronics Instrumentation Information Systems (EIIS). :1–6.

Support vector machines (SVMs) have been widely used for classification in machine learning and data mining. However, SVM faces a huge challenge in large scale classification tasks. Recent progresses have enabled additive kernel version of SVM efficiently solves such large scale problems nearly as fast as a linear classifier. This paper proposes a new accelerated mini-batch stochastic gradient descent algorithm for SVM classification with additive kernel (AK-ASGD). On the one hand, the gradient is approximated by the sum of a scalar polynomial function for each feature dimension; on the other hand, Nesterov's acceleration strategy is used. The experimental results on benchmark large scale classification data sets show that our proposed algorithm can achieve higher testing accuracies and has faster convergence rate.