Biblio
Filters: Keyword is numerical optimisation [Clear All Filters]
Hybridisation of Artificial Bee Colony Algorithm on Four Classes of Real-valued Optimisation Functions. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1439–1442.
.
2017. Hybridisation of algorithms in evolutionary computation (EC) has been used by researchers to overcome drawbacks of population-based algorithms. The introduced algorithm called mutated Artificial Bee Colony algorithm, is a novel variant of standard Artificial Bee Colony algorithm (ABC) which successfully moves out of local optima. First, new parameters are found and tuned in ABC algorithm. Second, the mutation operator is employed which is responsible for bringing diversity into solution. Third, to avoid tuning 'limit' parameter and prevent abandoning good solutions, it is replaced by average fitness comparison of worst employed bee. Thus, proposed algorithm gives the global solution thus improving the exploration capability of ABC. The proposed algorithm is tested on four classes of problems. The results are compared with six other population-based algorithms, namely Genetic Algorithm (GA), Particle Swarm Optimsation (PSO), Differential Evolution (DE), standard Artificial Bee Colony algorithm (ABC) and its two variants- quick Artificial Bee Colony algorithm (qABC) and adaptive Artificial Bee Colony algorithm (aABC). Overall results show that mutated ABC is at par with aABC and better than above-mentioned algorithms. The novel algorithm is best suited to 3 of the 4 classes of functions under consideration. Functions belonging to UN class have shown near optimal solution.