Biblio
Filters: Keyword is Merkle Tree [Clear All Filters]
Evaluation of Performance and Security of Proof of Work and Proof of Stake using Blockchain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :279–283.
.
2021. Storing information in Blockchain has become in vogue in the Technical and Communication Industry with many major players jumping into the bandwagon. Two of the most prominent enablers for Blockchain are “Proof of Work” and “Proof of Stake”. Proof of work includes the members solving the complex problem without having a particular need for the solution (except as evidence, of course), which absorbs a large number of resources in turn. The proof of stake doesn’t require as many resources to enable Blockchain secure information store. Both methodologies have their advantages and their shortcomings. The article attempts to review the current literature and collate the results of the study to measure the performance of both the methodologies and to arrive at a consensus regarding either or both methodologies to implement Blockchain to store data. Post reviewing the performance aspects and security features of both Proofs of Stake and Proof of Work the reviewer attempts to arrive at a secure and better performing blended Blockchain methodology that has wide industry practical application.
ASSURE: Authentication Scheme for SecURE Energy Efficient Non-Volatile Memories. Proceedings of the 54th Annual Design Automation Conference 2017. :11:1–11:6.
.
2017. Data tampering threatens data integrity in emerging non-volatile memories (NVMs). Whereas Merkle Tree (MT) memory authentication is effective in thwarting data tampering attacks, it drastically increases cell writes and memory accesses, adversely impacting NVM energy, lifetime, and system performance (instructions per cycle (IPC)). We propose ASSURE, a low overhead, high performance Authentication Scheme for SecURE energy efficient (ASSURE) NVMs. ASSURE synergistically integrates (i) smart message authentication codes (SMACs), which eliminate redundant cell writes by enabling MAC computation of only modified words on memory writes, with (ii) multi-root MTs (MMTs), which reduce MT reads/writes by constructing either high performance static MMTs (SMMTs) or low overhead dynamic MMTs (DMMTs) over frequently accessed memory regions. Our full-system simulations of the SPEC CPU2006 benchmarks on a triple-level cell (TLC) resistive RAM (RRAM) architecture show that on average, SMMT ASSURE (DMMT ASSURE) reduces NVM energy by 59% (55%), increases memory lifetime by 2.36x (2.11x), and improves IPC by 11% (10%), over state-of-the-art MT memory authentication.