Visible to the public Biblio

Filters: Keyword is SIS  [Clear All Filters]
2018-09-28
Wang, Xuyang, Hu, Aiqun, Fang, Hao.  2017.  Feasibility Analysis of Lattice-based Proxy Re-Encryption. Proceedings of the 2017 International Conference on Cryptography, Security and Privacy. :12–16.
Proxy Re-encryption (PRE) is a useful cryptographic structure who enables a semi-trusted proxy to convert a ciphertext for Alice into a ciphertext for Bob without seeing the corresponding plaintext. Although there are many PRE schemes in recent years, few of them are set up based on lattice. Not only this, these lattice-based PRE schemes are all more complicated than the traditional PRE schemes. In this paper, through the study of the common lattice problems such as the Small integer solution (SIS) and the Learning with Errors (LWE), we analyze the feasibility of efficient lattice-based PRE scheme combined with the previous results. Finally, we propose an efficient lattice-based PRE scheme L-PRE without losing the hardness of lattice problems.
2018-05-09
Wang, Z., Hu, H., Zhang, C..  2017.  On achieving SDN controller diversity for improved network security using coloring algorithm. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1270–1275.

The SDN (Software Defined Networking) paradigm rings flexibility to the network management and is an enabler to offer huge opportunities for network programmability. And, to solve the scalability issue raised by the centralized architecture of SDN, multi-controllers deployment (or distributed controllers system) is envisioned. In this paper, we focus on increasing the diversity of SDN control plane so as to enhance the network security. Our goal is to limit the ability of a malicious controller to compromise its neighboring controllers, and by extension, the rest of the controllers. We investigate a heterogeneous Susceptible-Infectious-Susceptible (SIS) epidemic model to evaluate the security performance and propose a coloring algorithm to increase the diversity based on community detection. And the simulation results demonstrate that our algorithm can reduce infection rate in control plane and our work shows that diversity must be introduced in network design for network security.