Visible to the public Biblio

Filters: Keyword is botnet traffic detection  [Clear All Filters]
2021-03-04
Nugraha, B., Nambiar, A., Bauschert, T..  2020.  Performance Evaluation of Botnet Detection using Deep Learning Techniques. 2020 11th International Conference on Network of the Future (NoF). :141—149.

Botnets are one of the major threats on the Internet. They are used for malicious activities to compromise the basic network security goals, namely Confidentiality, Integrity, and Availability. For reliable botnet detection and defense, deep learning-based approaches were recently proposed. In this paper, four different deep learning models, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), hybrid CNN-LSTM, and Multi-layer Perception (MLP) are applied for botnet detection and simulation studies are carried out using the CTU-13 botnet traffic dataset. We use several performance metrics such as accuracy, sensitivity, specificity, precision, and F1 score to evaluate the performance of each model on classifying both known and unknown (zero-day) botnet traffic patterns. The results show that our deep learning models can accurately and reliably detect both known and unknown botnet traffic, and show better performance than other deep learning models.

2018-05-09
Jonsdottir, G., Wood, D., Doshi, R..  2017.  IoT network monitor. 2017 IEEE MIT Undergraduate Research Technology Conference (URTC). :1–5.
IoT Network Monitor is an intuitive and user-friendly interface for consumers to visualize vulnerabilities of IoT devices in their home. Running on a Raspberry Pi configured as a router, the IoT Network Monitor analyzes the traffic of connected devices in three ways. First, it detects devices with default passwords exploited by previous attacks such as the Mirai Botnet, changes default device passwords to randomly generated 12 character strings, and reports the new passwords to the user. Second, it conducts deep packet analysis on the network data from each device and notifies the user of potentially sensitive personal information that is being transmitted in cleartext. Lastly, it detects botnet traffic originating from an IoT device connected to the network and instructs the user to disconnect the device if it has been hacked. The user-friendly IoT Network Monitor will enable homeowners to maintain the security of their home network and better understand what actions are appropriate when a certain security vulnerability is detected. Wide adoption of this tool will make consumer home IoT networks more secure.