Visible to the public Biblio

Filters: Keyword is Hardening  [Clear All Filters]
2022-04-01
Sedano, Wadlkur Kurniawan, Salman, Muhammad.  2021.  Auditing Linux Operating System with Center for Internet Security (CIS) Standard. 2021 International Conference on Information Technology (ICIT). :466—471.
Linux is one of the operating systems to support the increasingly rapid development of internet technology. Apart from the speed of the process, security also needs to be considered. Center for Internet Security (CIS) Benchmark is an example of a security standard. This study implements the CIS Benchmark using the Chef Inspec application. This research focuses on building a tool to perform security audits on the Ubuntu 20.04 operating system. 232 controls on CIS Benchmark were successfully implemented using Chef Inspec application. The results of this study were 87 controls succeeded, 118 controls failed, and 27 controls were skipped. This research is expected to be a reference for information system managers in managing system security.
2022-03-14
Perera, H.M.D.G.V., Samarasekara, K.M., Hewamanna, I.U.K., Kasthuriarachchi, D.N.W., Abeywardena, Kavinga Yapa, Yapa, Kanishka.  2021.  NetBot - An Automated Router Hardening Solution for Small to Medium Enterprises. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0015–0021.
Network security is of vital importance, and Information Technology admins must always be vigilant. But they often lack the expertise and skills required to harden the network properly, in with the emergence of security threats. The router plays a significant role in maintaining operational security for an organization. When it comes to information security, information security professionals mainly focus on protecting items such as firewalls, virtual private networks, etc. Routers are the foundation of any network's communication method, which means all the network information passes through the routers, making them a desirable target. The proposed automation of the router security hardening solution will immediately improve the security of routers and ensure that they are updated and hardened with minimal human intervention and configuration changes. This is specially focused on small and medium-sized organizations lacking workforce and expertise on network security and will help secure the routers with less time consumption, cost, and increased efficiency. The solution consists of four primary functions, initial configuration, vulnerability fixing, compliance auditing, and rollback. These focus on all aspects of router security in a network, from its configuration when it is initially connected to the network to checking its compliance errors, continuously monitoring the vulnerabilities that need to be fixed, and ensuring that the behavior of the devices is stable and shows no abnormalities when it comes to configuration changes.
2021-02-10
Kerschbaumer, C., Ritter, T., Braun, F..  2020.  Hardening Firefox against Injection Attacks. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :653—663.
Web browsers display content in the form of HTML, CSS and JavaScript retrieved from the world wide web. The loaded content is subject to the web security model and considered untrusted and potentially malicious. To complicate security matters, Firefox uses the same technologies to render its user interface as it does to render untrusted web content which blurs the distinction between the two privilege levels.Getting interactions between the two correct turns out to be complicated and has led to numerous real-world security vulnerabilities. We study those vulnerabilities to discover common threats and explain how we address them systematically to harden Firefox.
2018-08-23
Laszka, Aron, Abbas, Waseem, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2017.  Synergic Security for Smart Water Networks: Redundancy, Diversity, and Hardening. Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks. :21–24.

Smart water networks can provide great benefits to our society in terms of efficiency and sustainability. However, smart capabilities and connectivity also expose these systems to a wide range of cyber attacks, which enable cyber-terrorists and hostile nation states to mount cyber-physical attacks. Cyber-physical attacks against critical infrastructure, such as water treatment and distribution systems, pose a serious threat to public safety and health. Consequently, it is imperative that we improve the resilience of smart water networks. We consider three approaches for improving resilience: redundancy, diversity, and hardening. Even though each one of these "canonical" approaches has been throughly studied in prior work, a unified theory on how to combine them in the most efficient way has not yet been established. In this paper, we address this problem by studying the synergy of these approaches in the context of protecting smart water networks from cyber-physical contamination attacks.

2018-05-09
Jillepalli, A. A., Leon, D. C. d, Steiner, S., Sheldon, F. T., Haney, M. A..  2017.  Hardening the Client-Side: A Guide to Enterprise-Level Hardening of Web Browsers. 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :687–692.
Today, web browsers are a major avenue for cyber-compromise and data breaches. Web browser hardening, through high-granularity and least privilege tailored configurations, can help prevent or mitigate many of these attack avenues. For example, on a classic client desktop infrastructure, an enforced configuration that enables users to use one browser to connect to critical and trusted websites and a different browser for un-trusted sites, with the former restricted to trusted sites and the latter with JavaScript and Plugins disabled by default, may help prevent most JavaScript and Plugin-based attacks to critical enterprise sites. However, most organizations, today, still allow web browsers to run with their default configurations and allow users to use the same browser to connect to trusted and un-trusted sites alike. In this article, we present detailed steps for remotely hardening multiple web browsers in a Windows-based enterprise, for Internet Explorer and Google Chrome. We hope that system administrators use this guide to jump-start an enterprise-wide strategy for implementing high-granularity and least privilege browser hardening. This will help secure enterprise systems at the front-end in addition to the network perimeter.