Visible to the public Biblio

Filters: Keyword is security overhead  [Clear All Filters]
2021-03-29
Lakhdhar, Y., Rekhis, S., Sabir, E..  2020.  A Game Theoretic Approach For Deploying Forensic Ready Systems. 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–6.
Cyber incidents are occurring every day using various attack strategies. Deploying security solutions with strong configurations will reduce the attack surface and improve the forensic readiness, but will increase the security overhead and cost. In contrast, using moderate or low security configurations will reduce that overhead, but will inevitably decrease the investigation readiness. To avoid the use of cost-prohibitive approaches in developing forensic-ready systems, we present in this paper a game theoretic approach for deploying an investigation-ready infrastructure. The proposed game is a non-cooperative two-player game between an adaptive cyber defender that uses a cognitive security solution to increase the investigation readiness and reduce the attackers' untraceability, and a cyber attacker that wants to execute non-provable attacks with a low cost. The cognitive security solution takes its strategic decision, mainly based on its ability to make forensic experts able to differentiate between provable identifiable, provable non-identifiable, and non-provable attack scenarios, starting from the expected evidences to be generated. We study the behavior of the two strategic players, looking for a mixed Nash equilibrium during competition and computing the probabilities of attacking and defending. A simulation is conducted to prove the efficiency of the proposed model in terms of the mean percentage of gained security cost, the number of stepping stones that an attacker creates and the rate of defender false decisions compared to two different approaches.
2018-05-09
Rahbari, D., Kabirzadeh, S., Nickray, M..  2017.  A security aware scheduling in fog computing by hyper heuristic algorithm. 2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS). :87–92.

Fog computing provides a new architecture for the implementation of the Internet of Things (IoT), which can connect sensor nodes to the cloud using the edge of the network. This structure has improved the latency and energy consumption in the cloud. In this heterogeneous and distributed environment, resource allocation is very important. Hence, scheduling will be a challenge to increase productivity and allocate resources appropriately to the tasks. Programs that run in this environment should be protected from intruders. We consider three parameters as authentication, integrity, and confidentiality to maintain security in fog devices. These parameters have time and computational overhead. In the proposed approach, we schedule the modules for the run in fog devices by heuristic algorithms based on data mining technique. The objective function is included CPU utilization, bandwidth, and security overhead. We compare the proposed algorithm with several heuristic algorithms. The results show that our proposed algorithm improved the average energy consumption of 63.27%, cost 44.71% relative to the PSO, ACO, SA algorithms.