Biblio
Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks. The recent researches in cyber-security have shown that a co-operation among IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about suspicious intrusions and increase the decision accuracy. The problem of existing cooperative IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a centralized architecture in which a central agent regulates the cooperation, which contradicts the distributed nature of the cloud. In this paper, we propose a framework that enables IDSs to distributively form trustworthy IDSs communities. We devise a novel decentralized algorithm, based on coalitional game theory, that allows a set of cloud-based IDSs to cooperatively set up their coalition in such a way to make their individual detection accuracy increase, even in the presence of untrusted IDSs.
Cloud computing significantly increased the security threats because intruders can exploit the large amount of cloud resources for their attacks. However, most of the current security technologies do not provide early warnings about such attacks. This paper presents a Finite State Hidden Markov prediction model that uses an adaptive risk approach to predict multi-staged cloud attacks. The risk model measures the potential impact of a threat on assets given its occurrence probability. The attacks prediction model was integrated with our autonomous cloud intrusion detection framework (ACIDF) to raise early warnings about attacks to the controller so it can take proactive corrective actions before the attacks pose a serious security risk to the system. According to our experiments on DARPA 2000 dataset, the proposed prediction model has successfully fired the early warning alerts 39.6 minutes before the launching of the LLDDoS1.0 attack. This gives the auto response controller ample time to take preventive measures.