Visible to the public Biblio

Filters: Keyword is computational thinking  [Clear All Filters]
2021-03-01
Nasir, J., Norman, U., Bruno, B., Dillenbourg, P..  2020.  When Positive Perception of the Robot Has No Effect on Learning. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :313–320.
Humanoid robots, with a focus on personalised social behaviours, are increasingly being deployed in educational settings to support learning. However, crafting pedagogical HRI designs and robot interventions that have a real, positive impact on participants' learning, as well as effectively measuring such impact, is still an open challenge. As a first effort in tackling the issue, in this paper we propose a novel robot-mediated, collaborative problem solving activity for school children, called JUSThink, aiming at improving their computational thinking skills. JUSThink will serve as a baseline and reference for investigating how the robot's behaviour can influence the engagement of the children with the activity, as well as their collaboration and mutual understanding while working on it. To this end, this first iteration aims at investigating (i) participants' engagement with the activity (Intrinsic Motivation Inventory-IMI), their mutual understanding (IMIlike) and perception of the robot (Godspeed Questionnaire); (ii) participants' performance during the activity, using several performance and learning metrics. We carried out an extensive user-study in two international schools in Switzerland, in which around 100 children participated in pairs in one-hour long interactions with the activity. Surprisingly, we observe that while a teams' performance significantly affects how team members evaluate their competence, mutual understanding and task engagement, it does not affect their perception of the robot and its helpfulness, a fact which highlights the need for baseline studies and multi-dimensional evaluation metrics when assessing the impact of robots in educational activities.
2018-05-09
Bauer, Aaron, Butler, Eric, Popović, Zoran.  2017.  Dragon Architect: Open Design Problems for Guided Learning in a Creative Computational Thinking Sandbox Game. Proceedings of the 12th International Conference on the Foundations of Digital Games. :26:1–26:6.

Educational games have a potentially significant role to play in the increasing efforts to expand access to computer science education. Computational thinking is an area of particular interest, including the development of problem-solving strategies like divide and conquer. Existing games designed to teach computational thinking generally consist of either open-ended exploration with little direct guidance or a linear series of puzzles with lots of direct guidance, but little exploration. Educational research indicates that the most effective approach may be a hybrid of these two structures. We present Dragon Architect, an educational computational thinking game, and use it as context for a discussion of key open problems in the design of games to teach computational thinking. These problems include how to directly teach computational thinking strategies, how to achieve a balance between exploration and direct guidance, and how to incorporate engaging social features. We also discuss several important design challenges we have encountered during the design of Dragon Architect. We contend the problems we describe are relevant to anyone making educational games or systems that need to teach complex concepts and skills.