Biblio
Filters: Keyword is gait analysis [Clear All Filters]
Gait Phase Segmentation Using Weighted Dynamic Time Warping and K-Nearest Neighbors Graph Embedding. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1180–1184.
.
2020. Gait phase segmentation is the process of identifying the start and end of different phases within a gait cycle. It is essential to many medical applications, such as disease diagnosis or rehabilitation. This work utilizes inertial measurement units (IMUs) mounted on the individual's foot to gather gait information and develops a gait phase segmentation method based on the collected signals. The proposed method utilizes a weighted dynamic time warping (DTW) algorithm to measure the distance between two different gait signals, and a k-nearest neighbors (kNN) algorithm to obtain the gait phase estimates. To reduce the complexity of the DTW-based kNN search, we propose a neural network-based graph embedding scheme that is able to map the IMU signals associated with each gait cycle into a distance-preserving low-dimensional representation while also producing a prediction on the k nearest neighbors of the test signal. Experiments are conducted on self-collected IMU gait signals to demonstrate the effectiveness of the proposed scheme.
ZEMFA: Zero-Effort Multi-Factor Authentication based on Multi-Modal Gait Biometrics. 2019 17th International Conference on Privacy, Security and Trust (PST). :1–10.
.
2019. In this paper, we consider the problem of transparently authenticating a user to a local terminal (e.g., a desktop computer) as she approaches towards the terminal. Given its appealing usability, such zero-effort authentication has already been deployed in the real-world where a computer terminal or a vehicle can be unlocked by the mere proximity of an authentication token (e.g., a smartphone). However, existing systems based on a single authentication factor contains one major security weakness - unauthorized physical access to the token, e.g., during lunch-time or upon theft, allows the attacker to have unfettered access to the terminal. We introduce ZEMFA, a zero-effort multi-factor authentication system based on multiple authentication tokens and multi-modal behavioral biometrics. Specifically, ZEMFA utilizes two types of authentication tokens, a smartphone and a smartwatch (or a bracelet) and two types of gait patterns captured by these tokens, mid/lower body movements measured by the phone and wrist/arm movements captured by the watch. Since a user's walking or gait pattern is believed to be unique, only that user (no impostor) would be able to gain access to the terminal even when the impostor is given access to both of the authentication tokens. We present the design and implementation of ZEMFA. We demonstrate that ZEMFA offers a high degree of detection accuracy, based on multi-sensor and multi-device fusion. We also show that ZEMFA can resist active attacks that attempt to mimic a user's walking pattern, especially when multiple devices are used.