Biblio
Exploits based on ROP (Return-Oriented Programming) are increasingly present in advanced attack scenarios. Testing systems for ROP-based attacks can be valuable for improving the security and reliability of software. In this paper, we propose ROPMATE, the first Visual Analytics system specifically designed to assist human red team ROP exploit builders. In contrast, previous ROP tools typically require users to inspect a puzzle of hundreds or thousands of lines of textual information, making it a daunting task. ROPMATE presents builders with a clear interface of well-defined and semantically meaningful gadgets, i.e., fragments of code already present in the binary application that can be chained to form fully-functional exploits. The system supports incrementally building exploits by suggesting gadget candidates filtered according to constraints on preserved registers and accessed memory. Several visual aids are offered to identify suitable gadgets and assemble them into semantically correct chains. We report on a preliminary user study that shows how ROPMATE can assist users in building ROP chains.
Malware writers often develop malware with automated measures, so the number of malware has increased dramatically. Automated measures tend to repeatedly use significant modules, which form the basis for identifying malware variants and discriminating malware families. Thus, we propose a novel visualization analysis method for researching malware similarity. This method converts malicious Windows Portable Executable (PE) files into local entropy images for observing internal features of malware, and then normalizes local entropy images into entropy pixel images for malware classification. We take advantage of the Jaccard index to measure similarities between entropy pixel images and the k-Nearest Neighbor (kNN) classification algorithm to assign entropy pixel images to different malware families. Preliminary experimental results show that our visualization method can discriminate malware families effectively.
Power system simulation environments with appropriate time-fidelity are needed to enable rapid testing of new smart grid technologies and for coupled simulations of the underlying cyber infrastructure. This paper presents such an environment which operates with power system models in the PMU time frame, including data visualization and interactive control action capabilities. The flexible and extensible capabilities are demonstrated by interfacing with a cyber infrastructure simulation.
In a continually evolving cyber-threat landscape, the detection and prevention of cyber attacks has become a complex task. Technological developments have led organisations to digitise the majority of their operations. This practice, however, has its perils, since cybespace offers a new attack-surface. Institutions which are tasked to protect organisations from these threats utilise mainly network data and their incident response strategy remains oblivious to the needs of the organisation when it comes to protecting operational aspects. This paper presents a system able to combine threat intelligence data, attack-trend data and organisational data (along with other data sources available) in order to achieve automated network-defence actions. Our approach combines machine learning, visual analytics and information from business processes to guide through a decision-making process for a Security Operation Centre environment. We test our system on two synthetic scenarios and show that correlating network data with non-network data for automated network defences is possible and worth investigating further.
Organizations are experiencing an ever-growing concern of how to identify and defend against insider threats. Those who have authorized access to sensitive organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. This could range from financial theft and intellectual property theft to the destruction of property and business reputation. Traditional intrusion detection systems are neither designed nor capable of identifying those who act maliciously within an organization. In this paper, we describe an automated system that is capable of detecting insider threats within an organization. We define a tree-structure profiling approach that incorporates the details of activities conducted by each user and each job role and then use this to obtain a consistent representation of features that provide a rich description of the user's behavior. Deviation can be assessed based on the amount of variance that each user exhibits across multiple attributes, compared against their peers. We have performed experimentation using ten synthetic data-driven scenarios and found that the system can identify anomalous behavior that may be indicative of a potential threat. We also show how our detection system can be combined with visual analytics tools to support further investigation by an analyst.
Intrusion Detection Systems (IDSs) are an important defense tool against the sophisticated and ever-growing network attacks. These systems need to be evaluated against high quality datasets for correctly assessing their usefulness and comparing their performance. We present an Intrusion Detection Dataset Toolkit (ID2T) for the creation of labeled datasets containing user defined synthetic attacks. The architecture of the toolkit is provided for examination and the example of an injected attack, in real network traffic, is visualized and analyzed. We further discuss the ability of the toolkit of creating realistic synthetic attacks of high quality and low bias.
As the centers of knowledge, discovery, and intellectual exploration, US universities provide appealing cybersecurity targets. Cyberattack origin patterns and relationships are not evident until data is visualized in maps and tested with statistical models. The current cybersecurity threat detection software utilized by University of North Florida's IT department records large amounts of attacks and attempted intrusions by the minute. This paper presents GIS mapping and spatial analysis of cybersecurity attacks on UNF. First, locations of cyberattack origins were detected by geographic Internet Protocol (GEO-IP) software. Second, GIS was used to map the cyberattack origin locations. Third, we used advanced spatial statistical analysis functions (exploratory spatial data analysis and spatial point pattern analysis) and R software to explore cyberattack patterns. The spatial perspective we promote is novel because there are few studies employing location analytics and spatial statistics in cyber-attack detection and prevention research.
In the pursuit of cyber security for organizations, there are tens of thousands of tools, guidelines, best practices, forensics, platforms, toolkits, diagnostics, and analytics available. However according to the Verizon 2014 Data Breach Report: “after analysing 10 years of data... organizations cannot keep up with cyber crime-and the bad guys are winning.” Although billions are expended worldwide on cyber security, organizations struggle with complexity, e.g., the NISTIR 7628 guidelines for cyber-physical systems are over 600 pages of text. And there is a lack of information visibility. Organizations must bridge the gap between technical cyber operations and the business/social priorities since both sides are essential for ensuring cyber security. Identifying visual structures for information synthesis could help reduce the complexity while increasing information visibility within organizations. This paper lays the foundation for investigating such visual structures by first identifying where current visual structures are succeeding or failing. To do this, we examined publicly available analyses related to three types of security issues: 1) epidemic, 2) cyber attacks on an industrial network, and 3) threat of terrorist attack. We found that existing visual structures are largely inadequate for reducing complexity and improving information visibility. However, based on our analysis, we identified a range of different visual structures, and their possible trade-offs/limitation is framing strategies for cyber policy. These structures form the basis of evolving visualization to support information synthesis for policy actions, which has rarely been done but is promising based on the efficacy of existing visualizations for cyber incident detection, attacks, and situation awareness.
Interactive visualization provides valuable support for exploring, analyzing, and understanding textual documents. Certain tasks, however, require that insights derived from visual abstractions are verified by a human expert perusing the source text. So far, this problem is typically solved by offering overview-detail techniques, which present different views with different levels of abstractions. This often leads to problems with visual continuity. Focus-context techniques, on the other hand, succeed in accentuating interesting subsections of large text documents but are normally not suited for integrating visual abstractions. With VarifocalReader we present a technique that helps to solve some of these approaches' problems by combining characteristics from both. In particular, our method simplifies working with large and potentially complex text documents by simultaneously offering abstract representations of varying detail, based on the inherent structure of the document, and access to the text itself. In addition, VarifocalReader supports intra-document exploration through advanced navigation concepts and facilitates visual analysis tasks. The approach enables users to apply machine learning techniques and search mechanisms as well as to assess and adapt these techniques. This helps to extract entities, concepts and other artifacts from texts. In combination with the automatic generation of intermediate text levels through topic segmentation for thematic orientation, users can test hypotheses or develop interesting new research questions. To illustrate the advantages of our approach, we provide usage examples from literature studies.
The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.
This paper presents a novel visual analytics technique developed to support exploratory search tasks for event data document collections. The technique supports discovery and exploration by clustering results and overlaying cluster summaries onto coordinated timeline and map views. Users can also explore and interact with search results by selecting clusters to filter and re-cluster the data with animation used to smooth the transition between views. The technique demonstrates a number of advantages over alternative methods for displaying and exploring geo-referenced search results and spatio-temporal data. Firstly, cluster summaries can be presented in a manner that makes them easy to read and scan. Listing representative events from each cluster also helps the process of discovery by preserving the diversity of results. Also, clicking on visual representations of geo-temporal clusters provides a quick and intuitive way to navigate across space and time simultaneously. This removes the need to overload users with the display of too many event labels at any one time. The technique was evaluated with a group of nineteen users and compared with an equivalent text based exploratory search engine.
Word clouds have emerged as a straightforward and visually appealing visualization method for text. They are used in various contexts as a means to provide an overview by distilling text down to those words that appear with highest frequency. Typically, this is done in a static way as pure text summarization. We think, however, that there is a larger potential to this simple yet powerful visualization paradigm in text analytics. In this work, we explore the usefulness of word clouds for general text analysis tasks. We developed a prototypical system called the Word Cloud Explorer that relies entirely on word clouds as a visualization method. It equips them with advanced natural language processing, sophisticated interaction techniques, and context information. We show how this approach can be effectively used to solve text analysis tasks and evaluate it in a qualitative user study.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.
One of the important direction of research in situational awareness is implementation of visual analytics techniques which can be efficiently applied when working with big security data in critical operational domains. The paper considers a visual analytics technique for displaying a set of security metrics used to assess overall network security status and evaluate the efficiency of protection mechanisms. The technique can assist in solving such security tasks which are important for security information and event management (SIEM) systems. The approach suggested is suitable for displaying security metrics of large networks and support historical analysis of the data. To demonstrate and evaluate the usefulness of the proposed technique we implemented a use case corresponding to the Olympic Games scenario.
Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper presents a novel software system for CryptOgraphic ALgorithm visuAl representation (COALA), which was developed to support a Data Security course at the School of Electrical Engineering, University of Belgrade. The system allows users to follow the execution of several complex algorithms (DES, AES, RSA, and Diffie-Hellman) on real world examples in a step by step detailed view with the possibility of forward and backward navigation. Benefits of the COALA system for students are observed through the increase of the percentage of students who passed the exam and the average grade on the exams during one school year.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.