Visible to the public Biblio

Filters: Keyword is Conductivity  [Clear All Filters]
2021-04-27
Mahamat, A. D., Ali, A., Tanguier, J. L., Donnot, A., Benelmir, R..  2020.  Mechanical and thermophysical characterization of local clay-based building materials. 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). :1–6.
The work we present is a comparative study based on an experimental approach to the mechanical and thermal properties of different local clay-based building materials with the incorporation of agricultural waste in Chad. These local building materials have been used since ancient times by the low-income population. They were the subject of a detailed characterization of their mechanical and thermal parameters. The objective is to obtain lightweight materials with good thermomechanical performance and which can contribute to improving thermal comfort, energy-saving, and security in social housing in Chad while reducing the cost of investment. Several clay-based samples with increasing incorporation of 0 to 8% of agricultural waste (cow dung or millet pod) were made. We used appropriate experimental methods for porous materials (the hydraulic press for mechanical tests and the box method for thermal tests). In this article, we have highlighted the values and variations of the mechanical compressive resistances, thermal conductivities, and thermal resistances of test pieces made with these materials. Knowing the mechanical and thermal characteristics, we also carried out a thermomechanical study. The thermal data made it possible to make Dynamic Thermal Simulations (STD) of the buildings thanks to the Pléiades + COMFIE software. The results obtained show that the use of these materials in a building presents good mechanical and thermal performance with low consumption of electrical energy for better thermal comfort of the occupants. Thus agricultural waste can be recovered thanks to its integration into building materials based on clay.
2020-07-16
Rudolph, Hendryk, Lan, Tian, Strehl, Konrad, He, Qinwei, Lan, Yuanliang.  2019.  Simulating the Efficiency of Thermoelectrical Generators for Sensor Nodes. 2019 4th IEEE Workshop on the Electronic Grid (eGRID). :1—6.

In order to be more environmentally friendly, a lot of parts and aspects of life become electrified to reduce the usage of fossil fuels. This can be seen in the increased number of electrical vehicles in everyday life. This of course only makes a positive impact on the environment, if the electricity is produced environmentally friendly and comes from renewable sources. But when the green electrical power is produced, it still needs to be transported to where it's needed, which is not necessarily near the production site. In China, one of the ways to do this transport is to use High Voltage Direct Current (HVDC) technology. This of course means, that the current has to be converted to DC before being transported to the end user. That implies that the converter stations are of great importance for the grid security. Therefore, a precise monitoring of the stations is necessary. Ideally, this could be accomplished with wireless sensor nodes with an autarkic energy supply. A role in this energy supply could be played by a thermoelectrical generator (TEG). But to assess the power generated in the specific environment, a simulation would be highly desirable, to evaluate the power gained from the temperature difference in the converter station. This paper proposes a method to simulate the generated power by combining a model for the generator with a Computational Fluid Dynamics (CFD) model converter.

2020-04-24
Bahman Soltani, Hooman, Abiri, Habibollah.  2018.  Criteria for Determining Maximum Theoretical Oscillating Frequency of Extended Interaction Oscillators for Terahertz Applications. IEEE Transactions on Electron Devices. 65:1564—1571.

Extended interaction oscillators (EIOs) are high-frequency vacuum-electronic sources, capable to generate millimeter-wave to terahertz (THz) radiations. They are considered to be potential sources of high-power submillimeter wavelengths. Different slow-wave structures and beam geometries are used for EIOs. This paper presents a quantitative figure of merit, the critical unloaded oscillating frequency (fcr) for any specific geometry of EIO. This figure is calculated and tested for 2π standing-wave modes (a common mode for EIOs) of two different slowwave structures (SWSs), one double-ridge SWS driven by a sheet electron beam and one ring-loaded waveguide driven by a cylindrical beam. The calculated fcrs are compared with particle-in-cell (PIC) results, showing an acceptable agreement. The derived fcr is calculated three to four orders of magnitude faster than the PIC solver. Generality of the method, its clear physical interpretation and computational rapidity, makes it a convenient approach to evaluate the high-frequency behavior of any specified EIO geometry. This allows to investigate the changes in geometry to attain higher frequencies at THz spectrum.