Visible to the public Biblio

Filters: Keyword is Integer Linear Program  [Clear All Filters]
2020-12-14
Ge, K., He, Y..  2020.  Detection of Sybil Attack on Tor Resource Distribution. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :328–332.
Tor anonymous communication system's resource publishing is vulnerable to enumeration attacks. Zhao determines users who requested resources are unavailable as suspicious malicious users, and gradually reduce the scope of suspicious users through several stages to reduce the false positive rate. However, it takes several stages to distinguish users. Although this method successfully detects the malicious user, the malicious user has acquired many resources in the previous stages, which reduce the availability of the anonymous communication system. This paper proposes a detection method based on Integer Linear Program to detect malicious users who perform enumeration attacks on resources in the process of resource distribution. First, we need construct a bipartite graph between the unavailable resources and the users who requested for these resources in the anonymous communication system; next we use Integer Linear Program to find the minimum malicious user set. We simulate the resource distribution process through computer program, we perform an experimental analysis of the method in this paper is carried out. Experimental results show that the accuracy of the method in this paper is above 80%, when the unavailable resources in the system account for no more than 50%. It is about 10% higher than Zhao's method.
2018-05-24
Bollwein, Ferdinand, Wiese, Lena.  2017.  Separation of Duties for Multiple Relations in Cloud Databases As an Optimization Problem. Proceedings of the 21st International Database Engineering & Applications Symposium. :98–107.

Confidentiality concerns are important in the context of cloud databases. In this paper, the technique of vertical fragmentation is explored to break sensitive associations between columns of several database tables according to confidentiality constraints. By storing insensitive portions of the database at different non-communicating servers it is possible to overcome confidentiality concerns. In addition, visibility constraints and data dependencies are supported. Moreover, to provide some control over the distribution of columns among different servers, novel closeness constraints are introduced. Finding confidentiality-preserving fragmentations is studied in the context of mathematical optimization and a corresponding integer linear program formulation is presented. Benchmarks were performed to evaluate the suitability of our approach.