Visible to the public Biblio

Filters: Keyword is Internet of Things(IoT)  [Clear All Filters]
2023-02-13
Mukalazi, Arafat, Boyaci, Ali.  2022.  The Internet of Things: a domain-specific security requirement classification. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1—8.
Worldwide, societies are rapidly becoming more connected, owing primarily to the growing number of intelligent things and smart applications (e.g, smart automobiles, smart wearable devices, etc.) These have occurred in tandem with the Internet Of Things, a new method of connecting the physical and virtual worlds. It is a new promising paradigm whereby every ‘thing’ can connect to anything via the Internet. However, with IoT systems being deployed even on large-scale, security concerns arise amongst other challenges. Hence the need to allocate appropriate protection of resources. The realization of secure IoT systems could only be accomplished with a comprehensive understanding of the particular needs of a specific system. How-ever, this paradigm lacks a proper and exhaustive classification of security requirements. This paper presents an approach towards understanding and classifying the security requirements of IoT devices. This effort is expected to play a role in designing cost-efficient and purposefully secured future IoT systems. During the coming up with and the classification of the requirements, We present a variety of set-ups and define possible attacks and threats within the scope of IoT. Considering the nature of IoT and security weaknesses as manifestations of unrealized security requirements, We put together possible attacks and threats in categories, assessed the existent IoT security requirements as seen in literature, added more in accordance with the applied domain of the IoT and then classified the security requirements. An IoT system can be secure, scalable, and flexible by following the proposed security requirement classification.
2022-01-31
Wang, Zhihui, Sun, Peng, Luo, Nana, Guo, Benzhen.  2021.  A Three-Party Mutual Authentication Protocol for Wearable IOT Health Monitoring System. 2021 IEEE International Conference on Smart Internet of Things (SmartIoT). :344—347.
Recently, the frequent security incidents of the Internet of things make the wearable IOT health monitoring systems (WIHMS) face serious security threats. Aiming at the security requirements of WIHMS identity authentication, Q. Jiang proposed a lightweight device mutual identity authentication solution in 2019. The scheme has good security performance. However, we find that in Jiang’s scheme, in the authentication phase, the server CS needs at least 3 queries and 1 update of the database operation, which affects the overall performance of the system. For this reason, we propose a new device mutual authentication and key agreement protocol. In our protocol, the authentication server only needs to query the server database twice.
2021-07-07
Kaur, Ketanpreet, Sharma, Vikrant, Sachdeva, Monika.  2020.  Framework for FOGIoT based Smart Video Surveillance System (SVSS). 2020 International Conference on Computational Performance Evaluation (ComPE). :797–799.
In this ever updating digitalized world, everything is connected with just few touches away. Our phone is connected with things around us, even we can see live video of our home, shop, institute or company on the phone. But we can't track suspicious activity 24*7 hence needed a smart system to track down any suspicious activity taking place, so it automatically notifies us before any robbery or dangerous activity takes place. We have proposed a framework to tackle down this security matter with the help of sensors enabled cameras(IoT) connected through a FOG layer hence called FOGIoT which consists of small servers configured with Human Activity Analysis Algorithm. Any suspicious activity analyzed will be reported to responsible personnel and the due action will be taken place.
2020-02-10
Nathi, Rohan A., Sutar, Dimpal.  2019.  Object Secured TCP Socket for Remote Monitoring IoT Devices. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.

With evolution of the communication technology remote monitoring has rooted into many applications. Swift innovation in Internet of Things (IoT) technology led to development of electronics embedded devices capable of sensing into the remote location and transferring the data through internet across the globe. Such devices transfers the sensitive data, which are susceptible to security attacks by the intruder and network hacker. Paper studies the existing security solutions and limitations for IoT environment and provides a pragmatic lightweight security scheme on Transmission Control Protocol (TCP) network for Remote Monitoring System devices over internet. This security scheme will aid Original Equipment Manufacturer (OEM) developing massive IoT products for remote monitoring. Real time evaluation of this scheme has been analyzed.

2018-05-24
HamlAbadi, K. G., Saghiri, A. M., Vahdati, M., TakhtFooladi, M. Dehghan, Meybodi, M. R..  2017.  A Framework for Cognitive Recommender Systems in the Internet of Things (IoT). 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI). :0971–0976.

Internet of Things (IoT) will be emerged over many of devices that are dynamically networked. Because of distributed and dynamic nature of IoT, designing a recommender system for them is a challenging problem. Recently, cognitive systems are used to design modern frameworks in different types of computer applications such as cognitive radio networks and cognitive peer-to-peer networks. A cognitive system can learn to improve its performance while operating under its unknown environment. In this paper, we propose a framework for cognitive recommender systems in IoT. To the best of our knowledge, there is no recommender system based on cognitive systems in the IoT. The proposed algorithm is compared with the existing recommender systems.