Visible to the public Biblio

Filters: Keyword is industrial applications  [Clear All Filters]
2020-04-10
Asare, Bismark Tei, Quist–Aphetsi, Kester, Nana, Laurent.  2019.  Nodal Authentication of IoT Data Using Blockchain. 2019 International Conference on Computing, Computational Modelling and Applications (ICCMA). :125—1254.
Pervasive systems over the years continuous to grow exponentially. Engagement of IoT in fields such as Agriculture, Home automation, industrial applications etc is on the rise. Self organizing networks within the IoT field give rise to engagement of various nodes for data communication. The rise in Cyber-attacks within IoT pose a lot of threat to these connected nodes and hence there is a need for data passing through nodes to be verified during communication. In this paper we proposed a nodal authentication approach in IoT using blockchain in securing the integrity of data passing through the nodes in IoT. In our work, we engaged the GOST algorithm in our approach. At the end, we achieved a nodal authentication and verification of the transmitted data. This makes it very difficult for an attacker to fake a node in the communication chain of the connected nodes. Data integrity was achieved in the nodes during the communication.
2020-01-13
Mohamed, Nader, Al-Jaroodi, Jameela.  2019.  A Middleware Framework to Address Security Issues in Integrated Multisystem Applications. 2019 IEEE International Systems Conference (SysCon). :1–6.
Integrating multiple programmable components and subsystems developed by different manufacturers into a final system (a system of systems) can create some security concerns. While there are many efforts for developing interoperability approaches to enable smooth, reliable and safe integration among different types of components to build final systems for different applications, less attention is usually given for the security aspects of this integration. This may leave the final systems exposed and vulnerable to potential security attacks. The issues elevate further when such systems are also connected to other networks such as the Internet or systems like fog and cloud computing. This issue can be found in important industrial applications like smart medical, smart manufacturing and smart city systems. As a result, along with performance, safety and reliability; multisystem integration must also be highly secure. This paper discusses the security issues instigated by such integration. In addition, it proposes a middleware framework to address the security issues for integrated multisystem applications.
2018-05-24
Genge, B., Duka, A. V., Haller, P., Crainicu, B., Sándor, H., Graur, F..  2017.  Design, Verification and Implementation of a Lightweight Remote Attestation Protocol for Process Control Systems. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). :75–82.

Until recently, IT security received limited attention within the scope of Process Control Systems (PCS). In the past, PCS consisted of isolated, specialized components running closed process control applications, where hardware was placed in physically secured locations and connections to remote network infrastructures were forbidden. Nowadays, industrial communications are fully exploiting the plethora of features and novel capabilities deriving from the adoption of commodity off the shelf (COTS) hardware and software. Nonetheless, the reliance on COTS for remote monitoring, configuration and maintenance also exposed PCS to significant cyber threats. In light of these issues, this paper presents the steps for the design, verification and implementation of a lightweight remote attestation protocol. The protocol is aimed at providing a secure software integrity verification scheme that can be readily integrated into existing industrial applications. The main novelty of the designed protocol is that it encapsulates key elements for the protection of both participating parties (i.e., verifier and prover) against cyber attacks. The protocol is formally verified for correctness with the help of the Scyther model checking tool. The protocol implementation and experimental results are provided for a Phoenix-Contact industrial controller, which is widely used in the automation of gas transportation networks in Romania.