Visible to the public Biblio

Filters: Keyword is secure messaging  [Clear All Filters]
2020-04-13
Dechand, Sergej, Naiakshina, Alena, Danilova, Anastasia, Smith, Matthew.  2019.  In Encryption We Don’t Trust: The Effect of End-to-End Encryption to the Masses on User Perception. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :401–415.
With WhatsApp's adoption of the Signal Protocol as its default, end-to-end encryption by the masses happened almost overnight. Unlike iMessage, WhatsApp notifies users that encryption is enabled, explicitly informing users about improved privacy. This rare feature gives us an opportunity to study people's understandings and perceptions of secure messaging pre-and post-mass messenger encryption (pre/post-MME). To study changes in perceptions, we compared the results of two mental models studies: one conducted in 2015 pre-MME and one in 2017 post-MME. Our primary finding is that users do not trust encryption as currently offered. When asked about encryption in the study, most stated that they had heard of encryption, but only a few understood the implications, even on a high level. Their consensus view was that no technical solution to stop skilled attackers from getting their data exists. Even with a major development, such as WhatsApp rolling out end-to-end encryption, people still do not feel well protected by their technology. Surprisingly, despite WhatsApp's end-to-end security info messages and the high media attention, the majority of the participants were not even aware of encryption. Most participants had an almost correct threat model, but don't believe that there is a technical solution to stop knowledgeable attackers to read their messages. Using technology made them feel vulnerable.
2018-06-07
Farulla, G. A., Pane, A. J., Prinetto, P., Varriale, A..  2017.  An object-oriented open software architecture for security applications. 2017 IEEE East-West Design Test Symposium (EWDTS). :1–6.

This paper introduces a newly developed Object-Oriented Open Software Architecture designed for supporting security applications, while leveraging on the capabilities offered by dedicated Open Hardware devices. Specifically, we target the SEcube™ platform, an Open Hardware security platform based on a 3D SiP (System on Package) designed and produced by Blu5 Group. The platform integrates three components employed for security in a single package: a Cortex-M4 CPU, a FPGA and an EAL5+ certified Smart Card. The Open Software Architecture targets both the host machine and the security device, together with the secure communication among them. To maximize its usability, this architecture is organized in several abstraction layers, ranging from hardware interfaces to device drivers, from security APIs to advanced applications, like secure messaging and data protection. We aim at releasing a multi-platform Open Source security framework, where software and hardware cooperate to hide to both the developer and the final users classical security concepts like cryptographic algorithms and keys, focusing, instead, on common operational security concepts like groups and policies.

2018-05-24
Kobeissi, N., Bhargavan, K., Blanchet, B..  2017.  Automated Verification for Secure Messaging Protocols and Their Implementations: A Symbolic and Computational Approach. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :435–450.

Many popular web applications incorporate end-toend secure messaging protocols, which seek to ensure that messages sent between users are kept confidential and authenticated, even if the web application's servers are broken into or otherwise compelled into releasing all their data. Protocols that promise such strong security guarantees should be held up to rigorous analysis, since protocol flaws and implementations bugs can easily lead to real-world attacks. We propose a novel methodology that allows protocol designers, implementers, and security analysts to collaboratively verify a protocol using automated tools. The protocol is implemented in ProScript, a new domain-specific language that is designed for writing cryptographic protocol code that can both be executed within JavaScript programs and automatically translated to a readable model in the applied pi calculus. This model can then be analyzed symbolically using ProVerif to find attacks in a variety of threat models. The model can also be used as the basis of a computational proof using CryptoVerif, which reduces the security of the protocol to standard cryptographic assumptions. If ProVerif finds an attack, or if the CryptoVerif proof reveals a weakness, the protocol designer modifies the ProScript protocol code and regenerates the model to enable a new analysis. We demonstrate our methodology by implementing and analyzing a variant of the popular Signal Protocol with only minor differences. We use ProVerif and CryptoVerif to find new and previously-known weaknesses in the protocol and suggest practical countermeasures. Our ProScript protocol code is incorporated within the current release of Cryptocat, a desktop secure messenger application written in JavaScript. Our results indicate that, with disciplined programming and some verification expertise, the systematic analysis of complex cryptographic web applications is now becoming practical.