Visible to the public Biblio

Filters: Keyword is Data Governance  [Clear All Filters]
2023-01-20
Fan, Jinqiang, Xu, Yonggang, Ma, Jing.  2022.  Research on Security Classification and Classification Method of Power Grid Data. 2022 6th International Conference on Smart Grid and Smart Cities (ICSGSC). :72—76.

In order to solve the problem of untargeted data security grading methods in the process of power grid data governance, this paper analyzes the mainstream data security grading standards at home and abroad, investigates and sorts out the characteristics of power grid data security grading requirements, and proposes a method that considers national, social, and A grid data security classification scheme for the security impact of four dimensions of individuals and enterprises. The plan determines the principle of power grid data security classification. Based on the basic idea of “who will be affected to what extent and to what extent when the power grid data security is damaged”, it defines three classification factors that need to be considered: the degree of impact, the scope of influence, and the objects of influence, and the power grid data is divided into five security levels. In the operation stage of power grid data security grading, this paper sorts out the experience and gives the recommended grading process. This scheme basically conforms to the status quo of power grid data classification, and lays the foundation for power grid data governance.

2021-05-13
Feng, Xiaohua, Feng, Yunzhong, Dawam, Edward Swarlat.  2020.  Artificial Intelligence Cyber Security Strategy. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :328—333.
Nowadays, STEM (science, technology, engineering and mathematics) have never been treated so seriously before. Artificial Intelligence (AI) has played an important role currently in STEM. Under the 2020 COVID-19 pandemic crisis, coronavirus disease across over the world we are living in. Every government seek advices from scientist before making their strategic plan. Most of countries collect data from hospitals (and care home and so on in the society), carried out data analysis, using formula to make some AI models, to predict the potential development patterns, in order to make their government strategy. AI security become essential. If a security attack make the pattern wrong, the model is not a true prediction, that could result in thousands life loss. The potential consequence of this non-accurate forecast would be even worse. Therefore, take security into account during the forecast AI modelling, step-by-step data governance, will be significant. Cyber security should be applied during this kind of prediction process using AI deep learning technology and so on. Some in-depth discussion will follow.AI security impact is a principle concern in the world. It is also significant for both nature science and social science researchers to consider in the future. In particular, because many services are running on online devices, security defenses are essential. The results should have properly data governance with security. AI security strategy should be up to the top priority to influence governments and their citizens in the world. AI security will help governments' strategy makers to work reasonably balancing between technologies, socially and politics. In this paper, strategy related challenges of AI and Security will be discussed, along with suggestions AI cyber security and politics trade-off consideration from an initial planning stage to its near future further development.
2020-12-28
Meng, C., Zhou, L..  2020.  Big Data Encryption Technology Based on ASCII And Application On Credit Supervision. 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :79—82.

Big Data Platform provides business units with data platforms, data products and data services by integrating all data to fully analyze and exploit the intrinsic value of data. Data accessed by big data platforms may include many users' privacy and sensitive information, such as the user's hotel stay history, user payment information, etc., which is at risk of leakage. This paper first analyzes the risks of data leakage, then introduces in detail the theoretical basis and common methods of data desensitization technology, and finally puts forward a set of effective market subject credit supervision application based on asccii, which is committed to solving the problems of insufficient breadth and depth of data utilization for enterprises involved, the problems of lagging regulatory laws and standards, the problems of separating credit construction and market supervision business, and the credit constraints of data governance.

2020-10-12
Chia, Pern Hui, Desfontaines, Damien, Perera, Irippuge Milinda, Simmons-Marengo, Daniel, Li, Chao, Day, Wei-Yen, Wang, Qiushi, Guevara, Miguel.  2019.  KHyperLogLog: Estimating Reidentifiability and Joinability of Large Data at Scale. 2019 IEEE Symposium on Security and Privacy (SP). :350–364.
Understanding the privacy relevant characteristics of data sets, such as reidentifiability and joinability, is crucial for data governance, yet can be difficult for large data sets. While computing the data characteristics by brute force is straightforward, the scale of systems and data collected by large organizations demands an efficient approach. We present KHyperLogLog (KHLL), an algorithm based on approximate counting techniques that can estimate the reidentifiability and joinability risks of very large databases using linear runtime and minimal memory. KHLL enables one to measure reidentifiability of data quantitatively, rather than based on expert judgement or manual reviews. Meanwhile, joinability analysis using KHLL helps ensure the separation of pseudonymous and identified data sets. We describe how organizations can use KHLL to improve protection of user privacy. The efficiency of KHLL allows one to schedule periodic analyses that detect any deviations from the expected risks over time as a regression test for privacy. We validate the performance and accuracy of KHLL through experiments using proprietary and publicly available data sets.
2018-05-24
Parycek, P., Pereira, G. Viale.  2017.  Drivers of Smart Governance: Towards to Evidence-Based Policy-Making. Proceedings of the 18th Annual International Conference on Digital Government Research. :564–565.

This paper presents the preliminary framework proposed by the authors for drivers of Smart Governance. The research question of this study is: What are the drivers for Smart Governance to achieve evidence-based policy-making? The framework suggests that in order to create a smart governance model, data governance and collaborative governance are the main drivers. These pillars are supported by legal framework, normative factors, principles and values, methods, data assets or human resources, and IT infrastructure. These aspects will guide a real time evaluation process in all levels of the policy cycle, towards to the implementation of evidence-based policies.