Visible to the public Biblio

Filters: Keyword is Privacy Requirements  [Clear All Filters]
2021-03-29
Grundy, J..  2020.  Human-centric Software Engineering for Next Generation Cloud- and Edge-based Smart Living Applications. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :1—10.

Humans are a key part of software development, including customers, designers, coders, testers and end users. In this keynote talk I explain why incorporating human-centric issues into software engineering for next-generation applications is critical. I use several examples from our recent and current work on handling human-centric issues when engineering various `smart living' cloud- and edge-based software systems. This includes using human-centric, domain-specific visual models for non-technical experts to specify and generate data analysis applications; personality impact on aspects of software activities; incorporating end user emotions into software requirements engineering for smart homes; incorporating human usage patterns into emerging edge computing applications; visualising smart city-related data; reporting diverse software usability defects; and human-centric security and privacy requirements for smart living systems. I assess the usefulness of these approaches, highlight some outstanding research challenges, and briefly discuss our current work on new human-centric approaches to software engineering for smart living applications.

2021-02-23
Liu, W., Park, E. K., Krieger, U., Zhu, S. S..  2020.  Smart e-Health Security and Safety Monitoring with Machine Learning Services. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—6.

This research provides security and safety extensions to a blockchain based solution whose target is e-health. The Advanced Blockchain platform is extended with intelligent monitoring for security and machine learning for detecting patient treatment medication safety issues. For the reasons of stringent HIPAA, HITECH, EU-GDPR and other regional regulations dictating security, safety and privacy requirements, the e-Health blockchains have to cover mandatory disclosure of violations or enforcements of policies during transaction flows involving healthcare. Our service solution further provides the benefits of resolving the abnormal flows of a medical treatment process, providing accountability of the service providers, enabling a trust health information environment for institutions to handle medication safely, giving patients a better safety guarantee, and enabling the authorities to supervise the security and safety of e-Health blockchains. The capabilities can be generalized to support a uniform smart solution across industry in a variety of blockchain applications.

2021-01-28
Wang, N., Song, H., Luo, T., Sun, J., Li, J..  2020.  Enhanced p-Sensitive k-Anonymity Models for Achieving Better Privacy. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :148—153.

To our best knowledge, the p-sensitive k-anonymity model is a sophisticated model to resist linking attacks and homogeneous attacks in data publishing. However, if the distribution of sensitive values is skew, the model is difficult to defend against skew attacks and even faces sensitive attacks. In practice, the privacy requirements of different sensitive values are not always identical. The “one size fits all” unified privacy protection level may cause unnecessary information loss. To address these problems, the paper quantifies privacy requirements with the concept of IDF and concerns more about sensitive groups. Two enhanced anonymous models with personalized protection characteristic, that is, (p,αisg) -sensitive k-anonymity model and (pi,αisg)-sensitive k-anonymity model, are then proposed to resist skew attacks and sensitive attacks. Furthermore, two clustering algorithms with global search and local search are designed to implement our models. Experimental results show that the two enhanced models have outstanding advantages in better privacy at the expense of a little data utility.

2020-12-11
Payne, J., Kundu, A..  2019.  Towards Deep Federated Defenses Against Malware in Cloud Ecosystems. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :92—100.

In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be crippling and highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detection and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each system's logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.

2020-11-09
Farhadi, M., Haddad, H., Shahriar, H..  2019.  Compliance Checking of Open Source EHR Applications for HIPAA and ONC Security and Privacy Requirements. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:704–713.
Electronic Health Record (EHR) applications are digital versions of paper-based patient's health information. They are increasingly adopted to improved quality in healthcare, such as convenient access to histories of patient medication and clinic visits, easier follow up of patient treatment plans, and precise medical decision-making process. EHR applications are guided by measures of the Health Insurance Portability and Accountability Act (HIPAA) to ensure confidentiality, integrity, and availability. Furthermore, Office of the National Coordinator (ONC) for Health Information Technology (HIT) certification criteria for usability of EHRs. A compliance checking approach attempts to identify whether or not an adopted EHR application meets the security and privacy criteria. There is no study in the literature to understand whether traditional static code analysis-based vulnerability discovered can assist in compliance checking of regulatory requirements of HIPAA and ONC. This paper attempts to address this issue. We identify security and privacy requirements for HIPAA technical requirements, and identify a subset of ONC criteria related to security and privacy, and then evaluate EHR applications for security vulnerabilities. Finally propose mitigation of security issues towards better compliance and to help practitioners reuse open source tools towards certification compliance.
2020-10-16
Supriyanto, Aji, Diartono, Dwi Agus, Hartono, Budi, Februariyanti, Herny.  2019.  Inclusive Security Models To Building E-Government Trust. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). :1—6.

The low attention to security and privacy causes some problems on data and information that can lead to a lack of public trust in e-Gov service. Security threats are not only included in technical issues but also non-technical issues and therefore, it needs the implementation of inclusive security. The application of inclusive security to e-Gov needs to develop a model involving security and privacy requirements as a trusted security solution. The method used is the elicitation of security and privacy requirements in a security perspective. Identification is carried out on security and privacy properties, then security and privacy relationships are determined. The next step is developing the design of an inclusive security model on e-Gov. The last step is doing an analysis of e-Gov service activities and the role of inclusive security. The results of this study identified security and privacy requirements for building inclusive security. Identification of security requirements involves properties such as confidentiality (C), integrity (I), availability (A). Meanwhile, privacy requirement involves authentication (Au), authorization (Az), and Non-repudiation (Nr) properties. Furthermore, an inclusive security design model on e-Gov requires trust of internet (ToI) and trust of government (ToG) as an e-Gov service provider. Access control is needed to provide solutions to e-Gov service activities.

2020-04-03
Renjan, Arya, Narayanan, Sandeep Nair, Joshi, Karuna Pande.  2019.  A Policy Based Framework for Privacy-Respecting Deep Packet Inspection of High Velocity Network Traffic. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :47—52.

Deep Packet Inspection (DPI) is instrumental in investigating the presence of malicious activity in network traffic and most existing DPI tools work on unencrypted payloads. As the internet is moving towards fully encrypted data-transfer, there is a critical requirement for privacy-aware techniques to efficiently decrypt network payloads. Until recently, passive proxying using certain aspects of TLS 1.2 were used to perform decryption and further DPI analysis. With the introduction of TLS 1.3 standard that only supports protocols with Perfect Forward Secrecy (PFS), many such techniques will become ineffective. Several security solutions will be forced to adopt active proxying that will become a big-data problem considering the velocity and veracity of network traffic involved. We have developed an ABAC (Attribute Based Access Control) framework that efficiently supports existing DPI tools while respecting user's privacy requirements and organizational policies. It gives the user the ability to accept or decline access decision based on his privileges. Our solution evaluates various observed and derived attributes of network connections against user access privileges using policies described with semantic technologies. In this paper, we describe our framework and demonstrate the efficacy of our technique with the help of use-case scenarios to identify network connections that are candidates for Deep Packet Inspection. Since our technique makes selective identification of connections based on policies, both processing and memory load at the gateway will be reduced significantly.

2020-03-09
Knirsch, Fabian, Engel, Dominik, Frincu, Marc, Prasanna, Viktor.  2015.  Model-Based Assessment for Balancing Privacy Requirements and Operational Capabilities in the Smart Grid. 2015 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

The smart grid changes the way energy is produced and distributed. In addition both, energy and information is exchanged bidirectionally among participating parties. Therefore heterogeneous systems have to cooperate effectively in order to achieve a common high-level use case, such as smart metering for billing or demand response for load curtailment. Furthermore, a substantial amount of personal data is often needed for achieving that goal. Capturing and processing personal data in the smart grid increases customer concerns about privacy and in addition, certain statutory and operational requirements regarding privacy aware data processing and storage have to be met. An increase of privacy constraints, however, often limits the operational capabilities of the system. In this paper, we present an approach that automates the process of finding an optimal balance between privacy requirements and operational requirements in a smart grid use case and application scenario. This is achieved by formally describing use cases in an abstract model and by finding an algorithm that determines the optimum balance by forward mapping privacy and operational impacts. For this optimal balancing algorithm both, a numeric approximation and - if feasible - an analytic assessment are presented and investigated. The system is evaluated by applying the tool to a real-world use case from the University of Southern California (USC) microgrid.

2018-05-24
Angelopoulos, Konstantinos, Diamantopoulou, Vasiliki, Mouratidis, Haralambos, Pavlidis, Michalis, Salnitri, Mattia, Giorgini, Paolo, Ruiz, José F..  2017.  A Holistic Approach for Privacy Protection in E-Government. Proceedings of the 12th International Conference on Availability, Reliability and Security. :17:1–17:10.

Improving e-government services by using data more effectively is a major focus globally. It requires Public Administrations to be transparent, accountable and provide trustworthy services that improve citizen confidence. However, despite all the technological advantages on developing such services and analysing security and privacy concerns, the literature does not provide evidence of frameworks and platforms that enable privacy analysis, from multiple perspectives, and take into account citizens' needs with regards to transparency and usage of citizens information. This paper presents the VisiOn (Visual Privacy Management in User Centric Open Requirements) platform, an outcome of a H2020 European Project. Our objective is to enable Public Administrations to analyse privacy and security from different perspectives, including requirements, threats, trust and law compliance. Finally, our platform-supported approach introduces the concept of Privacy Level Agreement (PLA) which allows Public Administrations to customise their privacy policies based on the privacy preferences of each citizen.