Visible to the public Biblio

Filters: Keyword is NP-hard  [Clear All Filters]
2022-05-03
Mohan, K. Madan, Yadav, B V Ram Naresh.  2021.  Dynamic Graph Based Encryption Scheme for Cloud Based Services and Storage. 2021 9th International Conference on Cyber and IT Service Management (CITSM). :1—4.

Cloud security includes the strategies which works together to guard data and infrastructure with a set of policies, procedures, controls and technologies. These security events are arranged to protect cloud data, support supervisory obedience and protect customers' privacy as well as setting endorsement rules for individual users and devices. The partition-based handling and encryption mechanism which provide fine-grained admittance control and protected data sharing to the data users in cloud computing. Graph partition problems fall under the category of NP-hard problems. Resolutions to these problems are generally imitative using heuristics and approximation algorithms. Partition problems strategy is used in bi-criteria approximation or resource augmentation approaches with a common extension of hyper graphs, which can address the storage hierarchy.

2020-10-05
Mitra, Aritra, Abbas, Waseem, Sundaram, Shreyas.  2018.  On the Impact of Trusted Nodes in Resilient Distributed State Estimation of LTI Systems. 2018 IEEE Conference on Decision and Control (CDC). :4547—4552.

We address the problem of distributed state estimation of a linear dynamical process in an attack-prone environment. A network of sensors, some of which can be compromised by adversaries, aim to estimate the state of the process. In this context, we investigate the impact of making a small subset of the nodes immune to attacks, or “trusted”. Given a set of trusted nodes, we identify separate necessary and sufficient conditions for resilient distributed state estimation. We use such conditions to illustrate how even a small trusted set can achieve a desired degree of robustness (where the robustness metric is specific to the problem under consideration) that could otherwise only be achieved via additional measurement and communication-link augmentation. We then establish that, unfortunately, the problem of selecting trusted nodes is NP-hard. Finally, we develop an attack-resilient, provably-correct distributed state estimation algorithm that appropriately leverages the presence of the trusted nodes.

2020-04-13
Wu, Qiong, Zhang, Haitao, Du, Peilun, Li, Ye, Guo, Jianli, He, Chenze.  2019.  Enabling Adaptive Deep Neural Networks for Video Surveillance in Distributed Edge Clouds. 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). :525–528.
In the field of video surveillance, the demands of intelligent video analysis services based on Deep Neural Networks (DNNs) have grown rapidly. Although most existing studies focus on the performance of DNNs pre-deployed at remote clouds, the network delay caused by computation offloading from network cameras to remote clouds is usually long and sometimes unbearable. Edge computing can enable rich services and applications in close proximity to the network cameras. However, owing to the limited computing resources of distributed edge clouds, it is challenging to satisfy low latency and high accuracy requirements for all users, especially when the number of users surges. To address this challenge, we first formulate the intelligent video surveillance task scheduling problem that minimizes the average response time while meeting the performance requirements of tasks and prove that it is NP-hard. Second, we present an adaptive DNN model selection method to identify the most effective DNN model for each task by comparing the feature similarity between the input video segment and pre-stored training videos. Third, we propose a two-stage delay-aware graph searching approach that presents a beneficial trade-off between network delay and computing delay. Experimental results demonstrate the efficiency of our approach.
2020-01-27
Fuchs, Caro, Spolaor, Simone, Nobile, Marco S., Kaymak, Uzay.  2019.  A Swarm Intelligence Approach to Avoid Local Optima in Fuzzy C-Means Clustering. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Clustering analysis is an important computational task that has applications in many domains. One of the most popular algorithms to solve the clustering problem is fuzzy c-means, which exploits notions from fuzzy logic to provide a smooth partitioning of the data into classes, allowing the possibility of multiple membership for each data sample. The fuzzy c-means algorithm is based on the optimization of a partitioning function, which minimizes inter-cluster similarity. This optimization problem is known to be NP-hard and it is generally tackled using a hill climbing method, a local optimizer that provides acceptable but sub-optimal solutions, since it is sensitive to initialization and tends to get stuck in local optima. In this work we propose an alternative approach based on the swarm intelligence global optimization method Fuzzy Self-Tuning Particle Swarm Optimization (FST-PSO). We solve the fuzzy clustering task by optimizing fuzzy c-means' partitioning function using FST-PSO. We show that this population-based metaheuristics is more effective than hill climbing, providing high quality solutions with the cost of an additional computational complexity. It is noteworthy that, since this particle swarm optimization algorithm is self-tuning, the user does not have to specify additional hyperparameters for the optimization process.