Visible to the public Biblio

Filters: Keyword is Outsourcing Decryption  [Clear All Filters]
2021-05-25
Pradhan, Ankit, R., Punith., Sethi, Kamalakanta, Bera, Padmalochan.  2020.  Smart Grid Data Security using Practical CP-ABE with Obfuscated Policy and Outsourcing Decryption. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
Smart grid consists of multiple different entities related to various energy management systems which share fine-grained energy measurements among themselves in an optimal and reliable manner. Such delivery is achieved through intelligent transmission and distribution networks composed of various stakeholders like Phasor Measurement Units (PMUs), Master and Remote Terminal Units (MTU and RTU), Storage Centers and users in power utility departments subject to volatile changes in requirements. Hence, secure accessibility of data becomes vital in the context of efficient functioning of the smart grid. In this paper, we propose a practical attribute-based encryption scheme for securing data sharing and data access in Smart Grid architectures with the added advantage of obfuscating the access policy. This is aimed at preserving data privacy in the context of competing smart grid operators. We build our scheme on Linear Secret Sharing (LSS) Schemes for supporting any monotone access structures and thus enhancing the expressiveness of access policies. Lastly, we analyze the security, access policy privacy and collusion resistance properties of our cryptosystem and provide an efficiency comparison as well as experimental analysis using the Charm-Crypto framework to validate the proficiency of our proposed solution.
2018-05-30
Baseri, Y., Hafid, A., Togou, M. A., Cherkaoui, S..  2017.  Controlling Cloud Data Access Privilege: Cryptanalysis and Security Enhancement. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). :1–5.

Recently, Jung et al. [1] proposed a data access privilege scheme and claimed that their scheme addresses data and identity privacy as well as multi-authority, and provides data access privilege for attribute-based encryption. In this paper, we show that this scheme, and also its former and latest versions (i.e. [2] and [3] respectively) suffer from a number of weaknesses in terms of finegrained access control, users and authorities collusion attack, user authorization, and user anonymity protection. We then propose our new scheme that overcomes these shortcomings. We also prove the security of our scheme against user collusion attacks, authority collusion attacks and chosen plaintext attacks. Lastly, we show that the efficiency of our scheme is comparable with existing related schemes.