Visible to the public Biblio

Filters: Keyword is data sets  [Clear All Filters]
2020-09-21
Lan, Jian, Gou, Shuai, Gu, Jiayi, Li, Gang, Li, Qin.  2019.  IoT Trajectory Data Privacy Protection Based on Enhanced Mix-zone. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :942–946.
Trajectory data in the Internet of Things contains many behavioral information of users, and the method of Mix-zone can be used to separate the association among the user's movement trajectories. In this paper, the weighted undirected graph is used to establish a mathematical model for the Mix-zone, and a user flow-based algorithm is proposed to estimate the probability of migration between nodes in the graph. In response to the attack method basing on the migration probability, the traditional Mix-zone is improved. Finally, an algorithms for adaptively building enhanced Mix-zone is proposed and the simulation using real data sets shows the superiority of the algorithm.
2020-03-23
Aguilar, Eryn, Dancel, Jevis, Mamaud, Deysaree, Pirosch, Dorothy, Tavacoli, Farin, Zhan, Felix, Pearce, Robbie, Novack, Margaret, Keehu, Hokunani, Lowe, Benjamin et al..  2019.  Highly Parallel Seedless Random Number Generation from Arbitrary Thread Schedule Reconstruction. 2019 IEEE International Conference on Big Knowledge (ICBK). :1–8.
Security is a universal concern across a multitude of sectors involved in the transfer and storage of computerized data. In the realm of cryptography, random number generators (RNGs) are integral to the creation of encryption keys that protect private data, and the production of uniform probability outcomes is a revenue source for certain enterprises (most notably the casino industry). Arbitrary thread schedule reconstruction of compare-and-swap operations is used to generate input traces for the Blum-Elias algorithm as a method for constructing random sequences, provided the compare-and-swap operations avoid cache locality. Threads accessing shared memory at the memory controller is a true random source which can be polled indirectly through our algorithm with unlimited parallelism. A theoretical and experimental analysis of the observation and reconstruction algorithm are considered. The quality of the random number generator is experimentally analyzed using two standard test suites, DieHarder and ENT, on three data sets.
2018-05-30
Price-Williams, M., Heard, N., Turcotte, M..  2017.  Detecting Periodic Subsequences in Cyber Security Data. 2017 European Intelligence and Security Informatics Conference (EISIC). :84–90.

Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory'senterprise computer network.