Hoey, Jesse, Sheikhbahaee, Zahra, MacKinnon, Neil J..
2019.
Deliberative and Affective Reasoning: a Bayesian Dual-Process Model. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). :388–394.
The presence of artificial agents in human social networks is growing. From chatbots to robots, human experience in the developed world is moving towards a socio-technical system in which agents can be technological or biological, with increasingly blurred distinctions between. Given that emotion is a key element of human interaction, enabling artificial agents with the ability to reason about affect is a key stepping stone towards a future in which technological agents and humans can work together. This paper presents work on building intelligent computational agents that integrate both emotion and cognition. These agents are grounded in the well-established social-psychological Bayesian Affect Control Theory (BayesAct). The core idea of BayesAct is that humans are motivated in their social interactions by affective alignment: they strive for their social experiences to be coherent at a deep, emotional level with their sense of identity and general world views as constructed through culturally shared symbols. This affective alignment creates cohesive bonds between group members, and is instrumental for collaborations to solidify as relational group commitments. BayesAct agents are motivated in their social interactions by a combination of affective alignment and decision theoretic reasoning, trading the two off as a function of the uncertainty or unpredictability of the situation. This paper provides a high-level view of dual process theories and advances BayesAct as a plausible, computationally tractable model based in social-psychological and sociological theory.
Carneiro, Lucas R., Delgado, Carla A.D.M., da Silva, João C.P..
2019.
Social Analysis of Game Agents: How Trust and Reputation can Improve Player Experience. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). :485–490.
Video games normally use Artificial Intelligence techniques to improve Non-Player Character (NPC) behavior, creating a more realistic experience for their players. However, rational behavior in general does not consider social interactions between player and bots. Because of that, a new framework for NPCs was proposed, which uses a social bias to mix the default strategy of finding the best possible plays to win with a analysis to decide if other players should be categorized as allies or foes. Trust and reputation models were used together to implement this demeanor. In this paper we discuss an implementation of this framework inside the game Settlers of Catan. New NPC agents are created to this implementation. We also analyze the results obtained from simulations among agents and players to conclude how the use of trust and reputation in NPCs can create a better gaming experience.