Biblio
Explainability and accuracy of the machine learning algorithms usually laid on a trade-off relationship. Several algorithms such as deep-learning artificial neural networks have high accuracy but low explainability. Since there were only limited ways to access the learning and prediction processes in algorithms, researchers and users were not able to understand how the results were given to them. However, a recent project, explainable artificial intelligence (XAI) by DARPA, showed that AI systems can be highly explainable but also accurate. Several technical reports of XAI suggested ways of extracting explainable features and their positive effects on users; the results showed that explainability of AI was helpful to make users understand and trust the system. However, only a few studies have addressed why the explainability can bring positive effects to users. We suggest theoretical reasons from the attribution theory and anthropomorphism studies. Trough a review, we develop three hypotheses: (1) causal attribution is a human nature and thus a system which provides casual explanation on their process will affect users to attribute the result of system; (2) Based on the attribution results, users will perceive the system as human-like and which will be a motivation of anthropomorphism; (3) The system will be perceived by the users through the anthropomorphism. We provide a research framework for designing causal explainability of an AI system and discuss the expected results of the research.
For optimal human-robot interaction, understanding the determinants and components of anthropomorphism is crucial. This research assessed the influence of an agent's social cues and controlling language use on user's perceptions of the agent's expertise, sociability, and trustworthiness. In a game context, the agent attempted to persuade users to modify their choices using high or low controlling language and using different levels of social cues (advice with text-only with no robot embodiment as the agent, a robot with elementary social cues, and a robot with advanced social cues). As expected, low controlling language lead to higher perceived anthropomorphism, while the robotic agent with the most social cues was selected as the most expert advisor and the non-social agent as the most trusted advisor.