Visible to the public Biblio

Filters: Keyword is Wireless Physical Layer Security  [Clear All Filters]
2022-12-01
Starks, Brandon E., Robinson, Karsen, Sitaula, Binod, Chrysler, Andrew M..  2021.  Physical Layer Wireless Security Through the Rotation of Polarized Antennas. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). :1483–1484.
A wireless communication system with rotating linearly polarized antennas is built and tested as a method for increasing physical layer security. Controlling the linear polarization angle from 0° to 180° yields bit error rates greater than 20% for 40° of rotation.
2018-06-07
Zenger, C. T., Pietersz, M., Rex, A., Brauer, J., Dressler, F. P., Baiker, C., Theis, D., Paar, C..  2017.  Implementing a real-time capable WPLS testbed for independent performance and security analyses. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :9–13.

As demonstrated recently, Wireless Physical Layer Security (WPLS) has the potential to offer substantial advantages for key management for small resource-constrained and, therefore, low-cost IoT-devices, e.g., the widely applied 8-bit MCU 8051. In this paper, we present a WPLS testbed implementation for independent performance and security evaluations. The testbed is based on off-the-shelf hardware and utilizes the IEEE 802.15.4 communication standard for key extraction and secret key rate estimation in real-time. The testbed can include generically multiple transceivers to simulate legitimate parties or eavesdropper. We believe with the testbed we provide a first step to make experimental-based WPLS research results comparable. As an example, we present evaluation results of several test cases we performed, while for further information we refer to https://pls.rub.de.