Visible to the public Biblio

Filters: Keyword is channel reciprocity  [Clear All Filters]
2021-08-02
Gao, Xiaomiao, Du, Wenjie, Liu, Weijiang, Wu, Ruiwen, Zhan, Furui.  2020.  A Lightweight and Efficient Physical Layer Key Generation Mechanism for MANETs. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1010–1015.
Due to the reciprocity of wireless channels, the communication parties can directly extract the shared key from channel. This solution were verified through several schemes. However, in real situations, channel sampling of legitimate transceivers might be impacted by noises and other interferences, which makes the channel states obtained by initiator and responder might be obvious different. The efficiency and even availability of physical layer key generation are thus reduced. In this paper, we propose a lightweight and efficient physical layer key generation scheme, which extract shared secret keys from channel state information (CSI). To improve the key generation process, the discrete cosine transform (DCT) is employed to reduce differences of channel states of legitimate transceivers. Then, these outputs are quantified and encoded through multi-bit adaptive quantization(MAQ) quantizer and gray code to generate binary bit sequence, which can greatly reduce the bit error rate. Moreover, the low density parity check (LDPC) code and universal hashing functions are used to achieve information reconciliation and privacy amplifification. By adding preprocessing methods in the key generation process and using the rich information of CSI, the security of communications can be increased on the basis of improving the key generation rate. To evaluate this scheme, a number of experiments in various real environments are conducted. The experimental results show that the proposed scheme can effificiently generate shared secret keys for nodes and protect their communication.
2020-03-04
Yao, Li, Peng, Linning, Li, Guyue, Fu, Hua, Hu, Aiqun.  2019.  A Simulation and Experimental Study of Channel Reciprocity in TDD and FDD Wiretap Channels. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :113–117.

In recent years, secret key generation based on physical layer security has gradually attracted high attentions. The wireless channel reciprocity and eavesdropping attack are critical problems in secret key generation studies. In this paper, we carry out a simulation and experimental study of channel reciprocity in terms of measuring channel state information (CSI) in both time division duplexing (TDD) and frequency division duplexing (FDD) modes. In simulation study, a close eavesdropping wiretap channel model is introduced to evaluate the security of the CSI by using Pearson correlation coefficient. In experimental study, an indoor wireless CSI measurement system is built with N210 and X310 universal software radio peripheral (USRP) platforms. In TDD mode, theoretical analysis and most of experimental results show that the closer eavesdropping distance, the higher CSI correlation coefficient between eavesdropping channel and legitimate channel. However, in actual environment, when eavesdropping distance is too close (less than 1/4 wavelength), this CSI correlation seriously dropped. In FDD mode, both theoretical analysis and experimental results show that the wireless channel still owns some reciprocity. When frequency interval increases, the FDD channel reciprocity in actual environment is better than that in theoretical analysis.

2018-06-07
Qiao, Yue, Srinivasan, Kannan, Arora, Anish.  2017.  Channel Spoofer: Defeating Channel Variability and Unpredictability. Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies. :402–413.
A vast literature on secret sharing protocols now exists based on the folk theorem that the wireless channel between communicating parties Alice and Bob cannot be controlled or predicted by a third party in a fine-grain way. We find that the folk theorem unfortunately does not hold. In particular, we show how an adversary, using a customized full-duplex forwarder, can control the channel seen by Alice and Bob in fine granularity without leaving a trace, while predicting with high probability the secrets generated by any channel reciprocity based secret sharing protocol. An implementation of our proposed secret manipulator, called Channel Spoofer, on a software-defined radio platform empirically verifies Channel Spoofer's effectiveness in breaking several representative state-of-the-art secret sharing protocols. To the best of our knowledge, the proposed Channel Spoofer is the first practical attacker against all extant channel reciprocity based secret sharing protocols.