Biblio
Keeping Internet users safe from attacks and other threats is one of the biggest security challenges nowadays. Distributed Denial of Service (DDoS) [1] is one of the most common attacks. DDoS makes the system stop working by resource overload. Software Define Networking (SDN) [2] has recently emerged as a new networking technology offering an unprecedented programmability that allows network operators to dynamically configure and manage their infrastructures. The flexible processing and centralized management of SDN controller allow flexibly deploying complex security algorithms and mitigation methods. In this paper, we propose a new TCP-SYN flood attack mitigation in SDN networks using machine learning. By using a testbed, we implement the proposed algorithms, evaluate their accuracy and address the trade-off between the accuracy and capacity of the security device. The results show that the algorithms can mitigate TCP-SYN Flood attack over 96.
This paper introduces a newly developed Object-Oriented Open Software Architecture designed for supporting security applications, while leveraging on the capabilities offered by dedicated Open Hardware devices. Specifically, we target the SEcube™ platform, an Open Hardware security platform based on a 3D SiP (System on Package) designed and produced by Blu5 Group. The platform integrates three components employed for security in a single package: a Cortex-M4 CPU, a FPGA and an EAL5+ certified Smart Card. The Open Software Architecture targets both the host machine and the security device, together with the secure communication among them. To maximize its usability, this architecture is organized in several abstraction layers, ranging from hardware interfaces to device drivers, from security APIs to advanced applications, like secure messaging and data protection. We aim at releasing a multi-platform Open Source security framework, where software and hardware cooperate to hide to both the developer and the final users classical security concepts like cryptographic algorithms and keys, focusing, instead, on common operational security concepts like groups and policies.