Visible to the public Biblio

Filters: Keyword is 6LoWPAN adaptation layer  [Clear All Filters]
2017-04-20
Gomes, T., Salgado, F., Pinto, S., Cabral, J., Tavares, A..  2016.  Towards an FPGA-based network layer filter for the Internet of Things edge devices. 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.

In the near future, billions of new smart devices will connect the big network of the Internet of Things, playing an important key role in our daily life. Allowing IPv6 on the low-power resource constrained devices will lead research to focus on novel approaches that aim to improve the efficiency, security and performance of the 6LoWPAN adaptation layer. This work in progress paper proposes a hardware-based Network Packet Filtering (NPF) and an IPv6 Link-local address calculator which is able to filter the received IPv6 packets, offering nearly 18% overhead reduction. The goal is to obtain a System-on-Chip implementation that can be deployed in future IEEE 802.15.4 radio modules.

2015-04-30
Varadarajan, P., Crosby, G..  2014.  Implementing IPsec in Wireless Sensor Networks. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

There is an increasing need for wireless sensor networks (WSNs) to be more tightly integrated with the Internet. Several real world deployment of stand-alone wireless sensor networks exists. A number of solutions have been proposed to address the security threats in these WSNs. However, integrating WSNs with the Internet in such a way as to ensure a secure End-to-End (E2E) communication path between IPv6 enabled sensor networks and the Internet remains an open research issue. In this paper, the 6LoWPAN adaptation layer was extended to support both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, the communication endpoints in WSNs are able to communicate securely using encryption and authentication. The proposed AH and ESP compressed headers performance are evaluated via test-bed implementation in 6LoWPAN for IPv6 communications on IEEE 802.15.4 networks. The results confirm the possibility of implementing E2E security in IPv6 enabled WSNs to create a smooth transition between WSNs and the Internet. This can potentially play a big role in the emerging "Internet of Things" paradigm.