Biblio
Filters: Keyword is energy constraints [Clear All Filters]
InFoCPS: Integrating Formal Analysis of Cyber-Physical Systems with Energy Prognostics. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1—5.
.
2020. This paper is related to dissemination and exploitation of the InFoCPS PhD research project: Failure of Cyber-Physical Systems (CPS) may cause extensive damage. Safety standards emphasize the use of formal analysis in CPS development processes. Performance degradation assessment and estimation of lifetime of energy storage (electric batteries) are vital in supporting maintenance decisions and guaranteeing CPS reliability. Existing formal analysis techniques mainly focus on specifying energy constraints in simplified manners and checking whether systems operate within given energy bounds. Leading to overlooked energy features that impede development of trustworthy CPS. Prognostics and health management (PHM) estimate energy uncertainty and predict remaining life of systems. We aim to utilize PHM techniques to rigorously model dynamic energy behaviors; resulting models are amenable to formal analysis. This project will increase the degree of maintenance of CPS while (non)-functional requirements are preserved correctly.
Verification and Validation of a Cyber-Physical System in the Automotive Domain. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :326–333.
.
2017. Software development for Cyber-Physical Systems (CPS), e.g., autonomous vehicles, requires both functional and non-functional quality assurance to guarantee that the CPS operates safely and effectively. EAST-ADL is a domain specific architectural language dedicated to safety-critical automotive embedded system design. We have previously modified EAST-ADL to include energy constraints and transformed energy-aware real-time (ERT) behaviors modeled in EAST-ADL/Stateflow into UPPAAL models amenable to formal verification. Previous work is extended in this paper by including support for Simulink and an integration of Simulink/Stateflow (S/S) within the same too lchain. S/S models are transformed, based on the extended ERT constraints with probability parameters, into verifiable UPPAAL-SMC models and integrate the translation with formal statistical analysis techniques: Probabilistic extension of EAST-ADL constraints is defined as a semantics denotation. A set of mapping rules is proposed to facilitate the guarantee of translation. Formal analysis on both functional- and non-functional properties is performed using Simulink Design Verifier and UPPAAL-SMC. Our approach is demonstrated on the autonomous traffic sign recognition vehicle case study.