Biblio
Filters: Keyword is security and protection [Clear All Filters]
DDoS attack mitigation in cloud targets using scale-inside out assisted container separation. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
.
2022. From the past few years, DDoS attack incidents are continuously rising across the world. DDoS attackers have also shifted their target towards cloud environments as majority of services have shifted their operations to cloud. Various authors proposed distinct solutions to minimize the DDoS attacks effects on victim services and co-located services in cloud environments. In this work, we propose an approach by utilizing incoming request separation at the container-level. In addition, we advocate to employ scale-inside out [10] approach for all the suspicious requests. In this manner, we achieve the request serving of all the authenticated benign requests even in the presence of an attack. We also improve the usages of scale-inside out approach by applying it to a container which is serving the suspicious requests in a separate container. The results of our proposed technique show a significant decrease in the response time of benign users during the DDoS attack as compared with existing solutions.
STYX: A Trusted and Accelerated Hierarchical SSL Key Management and Distribution System for Cloud Based CDN Application. Proceedings of the 2017 Symposium on Cloud Computing. :201–213.
.
2017. Protecting the customer's SSL private key is the paramount issue to persuade the website owners to migrate their contents onto the cloud infrastructure, besides the advantages of cloud infrastructure in terms of flexibility, efficiency, scalability and elasticity. The emerging Keyless SSL solution retains on-premise custody of customers' SSL private keys on their own servers. However, it suffers from significant performance degradation and limited scalability, caused by the long distance connection to Key Server for each new coming end-user request. The performance improvements using persistent session and key caching onto cloud will degrade the key invulnerability and discourage the website owners because of the cloud's security bugs. In this paper, the challenges of secured key protection and distribution are addressed in philosophy of "Storing the trusted DATA on untrusted platform and transmitting through untrusted channel". To this end, a three-phase hierarchical key management scheme, called STYX1 is proposed to provide the secured key protection together with hardware assisted service acceleration for cloud-based content delivery network (CCDN) applications. The STYX is implemented based on Intel Software Guard Extensions (SGX), Intel QuickAssist Technology (QAT) and SIGMA (SIGn-and-MAc) protocol. STYX can provide the tight key security guarantee by SGX based key distribution with a light overhead, and it can further significantly enhance the system performance with QAT based acceleration. The comprehensive evaluations show that the STYX not only guarantees the absolute security but also outperforms the direct HTTPS server deployed CDN without QAT by up to 5x throughput with significant latency reduction at the same time.