Visible to the public Biblio

Filters: Keyword is fuzzy logic system  [Clear All Filters]
2021-11-29
Arunagirinathan, Paranietharan, Venayagamoorthy, Ganesh K..  2020.  Situational Awareness of Power System Stabilizers’ Performance in Energy Control Centers. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
Undamped power system oscillations are detrimental to stable and security of the electric grid. Historically, poorly damped low frequency rotor oscillations have caused system blackouts or brownouts. It is required to monitor the oscillation damping controllers such as power system stabilizers' (PSS) performance at energy control centers as well as at power plant control centers. Phasor measurement units (PMUs) based time response and frequency response information on PSS performance is collected. A fuzzy logic system is developed to combine the time and frequency response information to derive the situational awareness on PSS performance on synchronous generator's oscillation(s). A two-area four-machine benchmark power system is simulated on a real-time digital simulator platform. Fuzzy logic system developed is evaluated for different system disturbances. Situational awareness on PSS performance on synchronous generator's oscillation(s) allows the control center operator to enhance the power system operation more stable and secure.
2018-06-11
Abdulqadder, I. H., Zou, D., Aziz, I. T., Yuan, B..  2017.  Modeling software defined security using multi-level security mechanism for SDN environment. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :1342–1346.

Software Defined Networking (SDN) support several administrators for quicker access of resources due to its manageability, cost-effectiveness and adaptability. Even though SDN is beneficial it also exists with security based challenges due to many vulnerable threats. Participation of such threats increases their impact and risk level. In this paper a multi-level security mechanism is proposed over SDN architecture design. In each level the flow packet is analyzed using different metric and finally it reaches a secure controller for processing. Benign flow packets are differentiated from non-benign flow by means of the packet features. Initially routers verify user, secondly policies are verified by using dual-fuzzy logic design and thirdly controllers are authenticated using signature based authentication before assigning flow packets. This work aims to enhance entire security of developed SDN environment. SDN architecture is implemented in OMNeT++ simulation tool that supports OpenFlow switches and controllers. Finally experimental results show better performances in following performance metrics as throughput, time consumption and jitter.