Visible to the public Biblio

Filters: Keyword is MPSoC  [Clear All Filters]
2023-01-06
Haase, Julian, Jaster, Sebastian, Franz, Elke, Göhringer, Diana.  2022.  Secure Communication Protocol for Network-on-Chip with Authenticated Encryption and Recovery Mechanism. 2022 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP). :156—160.
In recent times, Network-on-Chip (NoC) has become state of the art for communication in Multiprocessor System-on-Chip due to the existing scalability issues in this area. However, these systems are exposed to security threats such as extraction of secret information. Therefore, the need for secure communication arises in such environments. In this work, we present a communication protocol based on authenticated encryption with recovery mechanisms to establish secure end-to-end communication between the NoC nodes. In addition, a selected key agreement approach required for secure communication is implemented. The security functionality is located in the network adapter of each processing element. If data is tampered with or deleted during transmission, recovery mechanisms ensure that the corrupted data is retransmitted by the network adapter without the need of interference from the processing element. We simulated and implemented the complete system with SystemC TLM using the NoC simulation platform PANACA. Our results show that we can keep a high rate of correctly transmitted information even when attackers infiltrated the NoC system.
2022-02-22
Sepulveda, Johanna, Winkler, Dominik, Sepúlveda, Daniel, Cupelli, Mario, Olexa, Radek.  2021.  Post-Quantum Cryptography in MPSoC Environments. 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC). :1—6.
Multi-processors System-on-Chip (MPSoC) are a key enabling technology for different applications characterized by hyper-connectivity and multi-tenant requirements, where resources are shared and communication is ubiquitous. In such an environment, security plays a major role. To cope with these security needs, MPSoCs usually integrate cryptographic functionalities deployed as software and/or hardware solutions. Quantum computing represents a threat for the current cryptography. To overcome such a threat, Post-quantum cryptography (PQC) can be used, thus ensuring the long term security of different applications. Since 2017, NIST is running a PQC standardization process. While the focus has been the security analysis of the different PQC candidates and the software implementation, the MPSoC PQC implementation has been neglected. To this end, this work presents two contributions. First, the exploration of the multicore capabilities for developing optimized PQC implementations. As a use case, NTRU lattice-based PQC, finalist for the NIST standardization process, is discussed. Second, NTRU was deployed on an AURIX microcontroller of Infineon Technologies AG with the Real-Time Operating System PXROS-HR from HighTec EDV-Systeme GmbH. Results show that NTRU can be efficiently implemented and optimized on a multicore architecture, improving the performance up to 43% when compared to single core solutions.
2021-11-08
Ruchkin, Vladimir, Fulin, Vladimir, Romanchuk, Vitaly, Koryachko, Alexei, Ruchkina, Ekaterina.  2020.  Personal Trusted Platform Module for the Multi-Core System of 5G Security and Privacy. 2020 ELEKTRO. :1–4.
The article is devoted to the choice of personal means of the 5G defense in dependence of hard- and software available to the user. The universal module MS 127.04 and its software compatible unit can be universally configured for use. An intelligent hardware and software platform is proposed for multi-core setting of policies for the automatic encryption of confidential data and selective blocking related to the implementation of computing security and confidentiality of data transfer, using such additional specially. A platform that resists the external influences is described. The platform is based on a universal module MS 127.05 (produced in Russia), that is a heterogeneous multiprocessor system on a chip), the system features 16 processor cores (NeuroMatrix Core 4) and five ARM Cortex-A5 units (ULSI 1879VM8Ya.
2021-06-28
Yao, Manting, Yuan, Weina, Wang, Nan, Zhang, Zeyu, Qiu, Yuan, Liu, Yichuan.  2020.  SS3: Security-Aware Vendor-Constrained Task Scheduling for Heterogeneous Multiprocessor System-on-Chips. 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC). :1–6.
Design for trust approaches can protect an MPSoC system from hardware Trojan attack due to the high penetration of third-party intellectual property. However, this incurs significant design cost by purchasing IP cores from various IP vendors, and the IP vendors providing particular IP are always limited, making these approaches unable to be performed in practice. This paper treats IP vendor as constraint, and tasks are scheduled with a minimized security constraint violations, furthermore, the area of MPSoC is also optimized during scheduling. Experimental results demonstrate the effectiveness of our proposed algorithm, by reducing 0.37% security constraint violations.
2020-11-02
Wang, Nan, Yao, Manting, Jiang, Dongxu, Chen, Song, Zhu, Yu.  2018.  Security-Driven Task Scheduling for Multiprocessor System-on-Chips with Performance Constraints. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :545—550.

The high penetration of third-party intellectual property (3PIP) brings a high risk of malicious inclusions and data leakage in products due to the planted hardware Trojans, and system level security constraints have recently been proposed for MPSoCs protection against hardware Trojans. However, secret communication still can be established in the context of the proposed security constraints, and thus, another type of security constraints is also introduced to fully prevent such malicious inclusions. In addition, fulfilling the security constraints incurs serious overhead of schedule length, and a two-stage performance-constrained task scheduling algorithm is then proposed to maintain most of the security constraints. In the first stage, the schedule length is iteratively reduced by assigning sets of adjacent tasks into the same core after calculating the maximum weight independent set of a graph consisting of all timing critical paths. In the second stage, tasks are assigned to proper IP vendors and scheduled to time periods with a minimization of cores required. The experimental results show that our work reduces the schedule length of a task graph, while only a small number of security constraints are violated.

2020-05-15
J.Y.V., Manoj Kumar, Swain, Ayas Kanta, Kumar, Sudeendra, Sahoo, Sauvagya Ranjan, Mahapatra, Kamalakanta.  2018.  Run Time Mitigation of Performance Degradation Hardware Trojan Attacks in Network on Chip. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :738—743.
Globalization of semiconductor design and manufacturing has led to several hardware security issues. The problem of Hardware Trojans (HT) is one such security issue discussed widely in industry and academia. Adversary design engineer can insert the HT to leak confidential data, cause a denial of service attack or any other intention specific to the design. HT in cryptographic modules and processors are widely discussed. HT in Multi-Processor System on Chips (MPSoC) are also catastrophic, as most of the military applications use MPSoCs. Network on Chips (NoC) are standard communication infrastructure in modern day MPSoC. In this paper, we present a novel hardware Trojan which is capable of inducing performance degradation and denial of service attacks in a NoC. The presence of the Hardware Trojan in a NoC can compromise the crucial details of packets communicated through NoC. The proposed Trojan is triggered by a particular complex bit pattern from input messages and tries to mislead the packets away from the destined addresses. A mitigation method based on bit shuffling mechanism inside the router with a key directly extracted from input message is proposed to limit the adverse effects of the Trojan. The performance of a 4×4 NoC is evaluated under uniform traffic with the proposed Trojan and mitigation method. Simulation results show that the proposed mitigation scheme is useful in limiting the malicious effect of hardware Trojan.
Daoud, Luka.  2018.  Secure Network-on-Chip Architectures for MPSoC: Overview and Challenges. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :542—543.
Network-on-Chip (NOC) is the heart of data communication between processing cores in Multiprocessor-based Systems on Chip (MPSoC). Packets transferred via the NoC are exposed to snooping, which makes NoC-based systems vulnerable to security attacks. Additionally, Hardware Trojans (HTs) can be deployed in some of the NoC nodes to apply security threats of extracting sensitive information or degrading the system performance. In this paper, an overview of some security attacks in NoC-based systems and the countermeasure techniques giving prominence on malicious nodes are discussed. Work in progress for secure routing algorithms is also presented.
2019-11-04
Daoud, Luka, Rafla, Nader.  2018.  Routing Aware and Runtime Detection for Infected Network-on-Chip Routers. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :775-778.

Network-on-Chip (NoC) architecture is the communication heart of the processing cores in Multiprocessors System-on-Chip (MPSoC), where messages are routed from a source to a destination through intermediate nodes. Therefore, NoC has become a target to security attacks. By experiencing outsourcing design, NoC can be infected with a malicious Hardware Trojans (HTs) which potentially degrade the system performance or leave a backdoor for secret key leaking. In this paper, we propose a HT model that applies a denial of service attack by misrouting the packets, which causes deadlock and consequently degrading the NoC performance. We present a secure routing algorithm that provides a runtime HT detection and avoiding scheme. Results show that our proposed model has negligible overhead in area and power, 0.4% and 0.6%, respectively.

2019-03-11
Siddiqui, F., Hagan, M., Sezer, S..  2018.  Embedded policing and policy enforcement approach for future secure IoT technologies. Living in the Internet of Things: Cybersecurity of the IoT - 2018. :1–10.

The Internet of Things (IoT) holds great potential for productivity, quality control, supply chain efficiencies and overall business operations. However, with this broader connectivity, new vulnerabilities and attack vectors are being introduced, increasing opportunities for systems to be compromised by hackers and targeted attacks. These vulnerabilities pose severe threats to a myriad of IoT applications within areas such as manufacturing, healthcare, power and energy grids, transportation and commercial building management. While embedded OEMs offer technologies, such as hardware Trusted Platform Module (TPM), that deploy strong chain-of-trust and authentication mechanisms, still they struggle to protect against vulnerabilities introduced by vendors and end users, as well as additional threats posed by potential technical vulnerabilities and zero-day attacks. This paper proposes a pro-active policy-based approach, enforcing the principle of least privilege, through hardware Security Policy Engine (SPE) that actively monitors communication of applications and system resources on the system communication bus (ARM AMBA-AXI4). Upon detecting a policy violation, for example, a malicious application accessing protected storage, it counteracts with predefined mitigations to limit the attack. The proposed SPE approach widely complements existing embedded hardware and software security technologies, targeting the mitigation of risks imposed by unknown vulnerabilities of embedded applications and protocols.

2018-06-11
Sepulveda, J., Fernandes, R., Marcon, C., Florez, D., Sigl, G..  2017.  A security-aware routing implementation for dynamic data protection in zone-based MPSoC. 2017 30th Symposium on Integrated Circuits and Systems Design (SBCCI). :59–64.
This work proposes a secure Network-on-Chip (NoC) approach, which enforces the encapsulation of sensitive traffic inside the asymmetrical security zones while using minimal and non-minimal paths. The NoC routing guarantees that the sensitive traffic communicates only through trusted nodes, which belong to a security zone. As the shape of the zones may change during operation, the sensitive traffic must be routed through low-risk paths. The experimental results show that this proposal can be an efficient and scalable alternative for enforcing the data protection inside a Multi-Processor System-on-Chip (MPSoC).