Visible to the public Biblio

Filters: Keyword is boosting  [Clear All Filters]
2023-06-02
Al-Omari, Ahmad, Allhusen, Andrew, Wahbeh, Abdullah, Al-Ramahi, Mohammad, Alsmadi, Izzat.  2022.  Dark Web Analytics: A Comparative Study of Feature Selection and Prediction Algorithms. 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :170—175.

The value and size of information exchanged through dark-web pages are remarkable. Recently Many researches showed values and interests in using machine-learning methods to extract security-related useful knowledge from those dark-web pages. In this scope, our goals in this research focus on evaluating best prediction models while analyzing traffic level data coming from the dark web. Results and analysis showed that feature selection played an important role when trying to identify the best models. Sometimes the right combination of features would increase the model’s accuracy. For some feature set and classifier combinations, the Src Port and Dst Port both proved to be important features. When available, they were always selected over most other features. When absent, it resulted in many other features being selected to compensate for the information they provided. The Protocol feature was never selected as a feature, regardless of whether Src Port and Dst Port were available.

2022-08-26
Zhang, Haichun, Huang, Kelin, Wang, Jie, Liu, Zhenglin.  2021.  CAN-FT: A Fuzz Testing Method for Automotive Controller Area Network Bus. 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). :225–231.
The Controller Area Network (CAN) bus is the de-facto standard for connecting the Electronic Control Units (ECUs) in automobiles. However, there are serious cyber-security risks due to the lack of security mechanisms. In order to mine the vulnerabilities in CAN bus, this paper proposes CAN-FT, a fuzz testing method for automotive CAN bus, which uses a Generative Adversarial Network (GAN) based fuzzy message generation algorithm and the Adaptive Boosting (AdaBoost) based anomaly detection mechanism to capture the abnormal states of CAN bus. Experimental results on a real-world vehicle show that CAN-FT can find vulnerabilities more efficiently and comprehensively.
da Costa, Patricia, Pereira, Pedro T. L., Paim, Guilherme, da Costa, Eduardo, Bampi, Sergio.  2021.  Boosting the Efficiency of the Harmonics Elimination VLSI Architecture by Arithmetic Approximations. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1—4.
Approximate computing emerged as a key alternative for trading off accuracy against energy efficiency and area reduction. Error-tolerant applications, such as multimedia processing, machine learning, and signal processing, can process the information with lower-than-standard accuracy at the circuit level while still fulfilling a good and acceptable service quality at the application level. Adaptive filtering-based systems have been demonstrating high resiliency against hardware errors due to their intrinsic self-healing characteristic. This paper investigates the design space exploration of arithmetic approximations in a Very Large-Scale Integration (VLSI) harmonic elimination (HE) hardware architecture based on Least Mean Square (LMS) adaptive filters. We evaluate the Pareto front of the area- and power versus quality curves by relaxing the arithmetic precision and by adopting both approximate multipliers (AxMs) in combination with approximate adders (AxAs). This paper explores the benefits and impacts of the Dynamic Range Unbiased (DRUM), Rounding-based Approximate (RoBA), and Leading one Bit-based Approximate (LoBA) multipliers in the power dissipation, circuit area, and quality of the VLSI HE architectures. Our results highlight the LoBA 0 as the most efficient AxM applied in the HE architecture. We combine the LoBA 0 with Copy and LOA AxAs with variations in the approximation level (L). Notably, LoBA 0 and LOA with \$L=6\$ resulted in savings of 43.7% in circuit area and 45.2% in power dissipation, compared to the exact HE, which uses multiplier and adder automatically selected by the logic synthesis tool. Finally, we demonstrate that the best hardware architecture found in our investigation successfully eliminates the contaminating spurious noise (i.e., 60 Hz and its harmonics) from the signal.
2022-07-29
Li, Leon, Ni, Shuyi, Orailoglu, Alex.  2021.  JANUS: Boosting Logic Obfuscation Scope Through Reconfigurable FSM Synthesis. 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :292—303.
Logic obfuscation has been proposed as a counter-measure against supply chain threats such as overproduction and IP piracy. However, the functional corruption it offers can be exploited by oracle-guided pruning attacks to recover the obfuscation key, forcing existing logic obfuscation methods to trivialize their output corruption which in turn leads to a diminished protection scope. In this paper, we address this quandary through an FSM obfuscation methodology that delivers obfuscation scope not only through external secrets but more importantly through inherent state transition patterns. We leverage a minimum-cut graph partitioning algorithm to divide the FSM diagram and implement the resulting partitions with distinct FF configurations, enabled by a novel synthesis methodology supporting reconfigurable FFs. The obfuscated FSM can be activated by invoking key values to dynamically switch the FF configuration at a small number of inter-partition transitions. Yet, the overall obfuscation scope comprises far more intra-partition transitions which are driven solely by the inherent transition sequences and thus reveal no key trace. We validate the security of the proposed obfuscation method against numerous functional and structural attacks. Experimental results confirm its delivery of extensive obfuscation scope at marginal overheads.
2022-03-08
Zhao, Bo, Zhang, Xianmin, Zhan, Zhenhui, Wu, Qiqiang.  2021.  A Novel Assessment Metric for Intelligent Fault Diagnosis of Rolling Bearings with Different Fault Severities and Orientations. 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO). :225–228.
The output of rolling bearings, as one of the most widely used support elements, has a significant impact on the equipment's stability and protection. Automatic and effective mining of features representing performance condition plays an important role in ensuring its reliability. However, in the actual process, there are often differences in the quality of features extracted from feature engineering, and this difference cannot be evaluated by commonly used methods, such as correlation metric and monotonicity metric. In order to accurately and automatically evaluate and select effective features, a novel assessment metric is established based on the attributes of the feature itself. Firstly, the features are extracted from different domains, which contain differential information, and a feature set is constructed. Secondly, the performances of the features are evaluated and selected based on internal distance and external distance, which is a novel feature evaluation model for classification task. Finally, an adaptive boosting strategy that combines multiple weak learners is adopted to achieve the fault identification at different severities and orientations. One experimental bearing dataset is adopted to analyze, and effectiveness and accuracy of proposed metric index is verified.
2022-01-25
Nakhodchi, Sanaz, Zolfaghari, Behrouz, Yazdinejad, Abbas, Dehghantanha, Ali.  2021.  SteelEye: An Application-Layer Attack Detection and Attribution Model in Industrial Control Systems using Semi-Deep Learning. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–8.
The security of Industrial Control Systems is of high importance as they play a critical role in uninterrupted services provided by Critical Infrastructure operators. Due to a large number of devices and their geographical distribution, Industrial Control Systems need efficient automatic cyber-attack detection and attribution methods, which suggests us AI-based approaches. This paper proposes a model called SteelEye based on Semi-Deep Learning for accurate detection and attribution of cyber-attacks at the application layer in industrial control systems. The proposed model depends on Bag of Features for accurate detection of cyber-attacks and utilizes Categorical Boosting as the base predictor for attack attribution. Empirical results demonstrate that SteelEye remarkably outperforms state-of-the-art cyber-attack detection and attribution methods in terms of accuracy, precision, recall, and Fl-score.
2021-12-22
Zhang, Yuyi, Xu, Feiran, Zou, Jingying, Petrosian, Ovanes L., Krinkin, Kirill V..  2021.  XAI Evaluation: Evaluating Black-Box Model Explanations for Prediction. 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT). :13–16.
The results of evaluating explanations of the black-box model for prediction are presented. The XAI evaluation is realized through the different principles and characteristics between black-box model explanations and XAI labels. In the field of high-dimensional prediction, the black-box model represented by neural network and ensemble models can predict complex data sets more accurately than traditional linear regression and white-box models such as the decision tree model. However, an unexplainable characteristic not only hinders developers from debugging but also causes users mistrust. In the XAI field dedicated to ``opening'' the black box model, effective evaluation methods are still being developed. Within the established XAI evaluation framework (MDMC) in this paper, explanation methods for the prediction can be effectively tested, and the identified explanation method with relatively higher quality can improve the accuracy, transparency, and reliability of prediction.
2021-03-30
Tai, J., Alsmadi, I., Zhang, Y., Qiao, F..  2020.  Machine Learning Methods for Anomaly Detection in Industrial Control Systems. 2020 IEEE International Conference on Big Data (Big Data). :2333—2339.

This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.

2020-11-20
Roy, D. D., Shin, D..  2019.  Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :576—581.
Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1].
2020-02-10
Li, Meng, Wu, Bin, Wang, Yaning.  2019.  Comment Spam Detection via Effective Features Combination. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.

Comment spam is one of the great challenges faced by forum administrators. Detecting and blocking comment spam can relieve the load on servers, improve user experience and purify the network conditions. This paper focuses on the detection of comment spam. The behaviors of spammer and the content of spam were analyzed. According to analysis results, two types of effective features are extracted which can make a better description of spammer characteristics. Additionally, a gradient boosting tree algorithm was used to construct the comment spam detector based on the extracted features. Our proposed method is examined on a blog spam dataset which was published by previous research, and the result illustrates that our method performs better than the previous method on detection accuracy. Moreover, the CPU time is recorded to demonstrate that the time spent on both training and testing maintains a small value.

2020-01-20
Sivanantham, S., Abirami, R., Gowsalya, R..  2019.  Comparing the Performance of Adaptive Boosted Classifiers in Anomaly based Intrusion Detection System for Networks. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.

The computer network is used by billions of people worldwide for variety of purposes. This has made the security increasingly important in networks. It is essential to use Intrusion Detection Systems (IDS) and devices whose main function is to detect anomalies in networks. Mostly all the intrusion detection approaches focuses on the issues of boosting techniques since results are inaccurate and results in lengthy detection process. The major pitfall in network based intrusion detection is the wide-ranging volume of data gathered from the network. In this paper, we put forward a hybrid anomaly based intrusion detection system which uses Classification and Boosting technique. The Paper is organized in such a way it compares the performance three different Classifiers along with boosting. Boosting process maximizes classification accuracy. Results of proposed scheme will analyzed over different datasets like Intrusion Detection Kaggle Dataset and NSL KDD. Out of vast analysis it is found Random tree provides best average Accuracy rate of around 99.98%, Detection rate of 98.79% and a minimum False Alarm rate.

2018-06-11
Belouch, Mustapha, hadaj, Salah El.  2017.  Comparison of Ensemble Learning Methods Applied to Network Intrusion Detection. Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. :194:1–194:4.

This paper investigates the possibility of using ensemble learning methods to improve the performance of intrusion detection systems. We compare an ensemble of three ensemble learning methods, boosting, bagging and stacking in order to improve the detection rate and to reduce the false alarm rate. These ensemble methods use well-known and different base classification algorithms, J48 (decision tree), NB (Naïve Bayes), MLP (Neural Network) and REPTree. The comparison experiments are applied on UNSW-NB15 data set a recent public data set for network intrusion detection systems. Results show that using boosting, bagging can achieve higher accuracy than single classifier but stacking performs better than other ensemble learning methods.