Visible to the public Biblio

Filters: Keyword is CNN feature  [Clear All Filters]
2018-06-11
Ocsa, A., Huillca, J. L., Coronado, R., Quispe, O., Arbieto, C., Lopez, C..  2017.  Approximate nearest neighbors by deep hashing on large-scale search: Comparison of representations and retrieval performance. 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). :1–6.

The growing volume of data and its increasing complexity require even more efficient and faster information retrieval techniques. Approximate nearest neighbor search algorithms based on hashing were proposed to query high-dimensional datasets due to its high retrieval speed and low storage cost. Recent studies promote the use of Convolutional Neural Network (CNN) with hashing techniques to improve the search accuracy. However, there are challenges to solve in order to find a practical and efficient solution to index CNN features, such as the need for a heavy training process to achieve accurate query results and the critical dependency on data-parameters. In this work we execute exhaustive experiments in order to compare recent methods that are able to produces a better representation of the data space with a less computational cost for a better accuracy by computing the best data-parameter values for optimal sub-space projection exploring the correlations among CNN feature attributes using fractal theory. We give an overview of these different techniques and present our comparative experiments for data representation and retrieval performance.