Biblio
While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.
In recent years the use of wireless ad hoc networks has seen an increase of applications. A big part of the research has focused on Mobile Ad Hoc Networks (MAnETs), due to its implementations in vehicular networks, battlefield communications, among others. These peer-to-peer networks usually test novel communications protocols, but leave out the network security part. A wide range of attacks can happen as in wired networks, some of them being more damaging in MANETs. Because of the characteristics of these networks, conventional methods for detection of attack traffic are ineffective. Intrusion Detection Systems (IDSs) are constructed on various detection techniques, but one of the most important is anomaly detection. IDSs based only in past attacks signatures are less effective, even more if these IDSs are centralized. Our work focuses on adding a novel Machine Learning technique to the detection engine, which recognizes attack traffic in an online way (not to store and analyze after), re-writing IDS rules on the fly. Experiments were done using the Dockemu emulation tool with Linux Containers, IPv6 and OLSR as routing protocol, leading to promising results.