Visible to the public Biblio

Filters: Keyword is Flooding Attack  [Clear All Filters]
2021-03-09
Fiade, A., Triadi, A. Yudha, Sulhi, A., Masruroh, S. Ummi, Handayani, V., Suseno, H. Bayu.  2020.  Performance Analysis of Black Hole Attack and Flooding Attack AODV Routing Protocol on VANET (Vehicular Ad-Hoc Network). 2020 8th International Conference on Cyber and IT Service Management (CITSM). :1–5.
Wireless technology is widely used today and is growing rapidly. One of the wireless technologies is VANET where the network can communicate with vehicles (V2V) which can prevent accidents on the road. Energy is also a problem in VANET so it needs to be used efficiently. The presence of malicious nodes or nodes can eliminate and disrupt the process of data communication. The routing protocol used in this study is AODV. The purpose of this study is to analyze the comparison of blackhole attack and flooding attack against energy-efficient AODV on VANET. This research uses simulation methods and several supporting programs such as OpenStreetMap, SUMO, NS2, NAM, and AWK to test the AODV routing protocol. Quality of service (QOS) parameters used in this study are throughput, packet loss, and end to end delay. Energy parameters are also used to examine the energy efficiency used. This study uses the number of variations of nodes consisting of 20 nodes, 40 nodes, 60 nodes, and different network conditions, namely normal network conditions, network conditions with black hole attacks, and network conditions with flooding attacks. The results obtained can be concluded that the highest value of throughput when network conditions are normal, the greatest value of packet loss when there is a black hole attack, the highest end to end delay value and the largest remaining energy when there is a flooding attack.
2020-06-29
Sultana, Subrina, Nasrin, Sumaiya, Lipi, Farhana Kabir, Hossain, Md Afzal, Sultana, Zinia, Jannat, Fatima.  2019.  Detecting and Preventing IP Spoofing and Local Area Network Denial (LAND) Attack for Cloud Computing with the Modification of Hop Count Filtering (HCF) Mechanism. 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). :1–6.
In today's world the number of consumers of cloud computing is increasing day by day. So, security is a big concern for cloud computing environment to keep user's data safe and secure. Among different types of attacks in cloud one of the harmful and frequently occurred attack is Distributed Denial of Service (DDoS) attack. DDoS is one type of flooding attack which is initiated by sending a large number of invalid packets to limit the services of the victim server. As a result, server can not serve the legitimate requests. DDoS attack can be done by a lot of strategies like malformed packets, IP spoofing, smurf attack, teardrop attack, syn flood attack, local area network denial (LAND) attack etc. This paper focuses on IP spoofing and LAND based DDoS attack. The objective of this paper is to propose an algorithm to detect and prevent IP spoofing and LAND attack. To achieve this objective a new approach is proposed combining two existing solutions of DDoS attack caused by IP spoofing and ill-formed packets. The proposed approach will provide a transparent solution, filter out the spoofed packets and minimize memory exhaustion through minimizing the number of insertions and updates required in the datatable. Finally, the approach is implemented and simulated using CloudSim 3.0 toolkit (a virtual cloud environment) followed by result analysis and comparison with existing algorithms.
2020-01-27
Kalaivani, S., Vikram, A., Gopinath, G..  2019.  An Effective Swarm Optimization Based Intrusion Detection Classifier System for Cloud Computing. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :185–188.
Most of the swarm optimization techniques are inspired by the characteristics as well as behaviour of flock of birds whereas Artificial Bee Colony is based on the foraging characteristics of the bees. However, certain problems which are solved by ABC do not yield desired results in-terms of performance. ABC is a new devised swarm intelligence algorithm and predominately employed for optimization of numerical problems. The main reason for the success of ABC algorithm is that it consists of feature such as fathomable and flexibility when compared to other swarm optimization algorithms and there are many possible applications of ABC. Cloud computing has their limitation in their application and functionality. The cloud computing environment experiences several security issues such as Dos attack, replay attack, flooding attack. In this paper, an effective classifier is proposed based on Artificial Bee Colony for cloud computing. It is evident in the evaluation results that the proposed classifier achieved a higher accuracy rate.
2018-06-20
Ansari, A., Waheed, M. A..  2017.  Flooding attack detection and prevention in MANET based on cross layer link quality assessment. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). :612–617.

Mobile Ad hoc Network (MANET) is one of the most popular dynamic topology reconfigurable local wireless network standards. Distributed Denial of Services is one of the most challenging threats in such a network. Flooding attack is one of the forms of DDoS attack whereby certain nodes in the network miss-utilizes the allocated channel by flooding packets with very high packet rate to it's neighbors, causing a fast energy loss to the neighbors and causing other legitimate nodes a denial of routing and transmission services from these nodes. In this work we propose a novel link layer assessment based flooding attack detection and prevention method. MAC layer of the nodes analyzes the signal properties and incorporated into the routing table by a cross layer MAC/Network interface. Once a node is marked as a flooding node, it is blacklisted in the routing table and is communicated to MAC through Network/MAC cross layer interface. Results shows that the proposed technique produces more accurate flooding attack detection in comparison to current state of art statistical analysis based flooding attack detection by network layer.