Visible to the public Biblio

Filters: Keyword is battery power  [Clear All Filters]
2020-10-30
Zhang, Jiliang, Qu, Gang.  2020.  Physical Unclonable Function-Based Key Sharing via Machine Learning for IoT Security. IEEE Transactions on Industrial Electronics. 67:7025—7033.

In many industry Internet of Things applications, resources like CPU, memory, and battery power are limited and cannot afford the classic cryptographic security solutions. Silicon physical unclonable function (PUF) is a lightweight security primitive that exploits manufacturing variations during the chip fabrication process for key generation and/or device authentication. However, traditional weak PUFs such as ring oscillator (RO) PUF generate chip-unique key for each device, which restricts their application in security protocols where the same key is required to be shared in resource-constrained devices. In this article, in order to address this issue, we propose a PUF-based key sharing method for the first time. The basic idea is to implement one-to-one input-output mapping with lookup table (LUT)-based interstage crossing structures in each level of inverters of RO PUF. Individual customization on configuration bits of interstage crossing structure and different RO selections with challenges bring high flexibility. Therefore, with the flexible configuration of interstage crossing structures and challenges, crossover RO PUF can generate the same shared key for resource-constrained devices, which enables a new application for lightweight key sharing protocols.

2020-05-26
Sbai, Oussama, Elboukhari, Mohamed.  2018.  Simulation of MANET's Single and Multiple Blackhole Attack with NS-3. 2018 IEEE 5th International Congress on Information Science and Technology (CiSt). :612–617.
Mobile Ad-hoc Networks (MANETs) have gained popularity both in research and in industrial fields. This is due to their ad hoc nature, easy deployment thanks to the lack of fixed infrastructure, self-organization of its components, dynamic topologies and the absence of any central authority for routing. However, MANETs suffer from several vulnerabilities such as battery power, limited memory space, and physical protection of network nodes. In addition, MANETs are sensitive to various attacks that threaten network security like Blackhole attack in its different implementation (single and multiple). In this article, we present the simulation results of single and multiple Blackhole attack in AODV and OLSR protocols on using NS-3.27 simulator. In this simulation, we took into consideration the density of the network described by the number of nodes included in the network, the speed of the nodes, the mobility model and even we chose the IEEE 802.11ac protocol for the pbysicallayer, in order to have a simulation, which deals with more general and more real scenarios. To be able to evaluate the impact of the attack on the network, the Packet delivery rate, Routing overhead, Throughput and Average End to End delay have been chosen as metrics for performance evaluation.
2018-06-20
Patil, S. U..  2017.  Gray hole attack detection in MANETs. 2017 2nd International Conference for Convergence in Technology (I2CT). :20–26.

Networking system does not liable on static infrastructure that interconnects various nodes in identical broadcast range dynamically called as Mobile Ad-hoc Network. A Network requires adaptive connectivity due to this data transmission rate increased. In this paper, we designed developed a dynamic cluster head selection to detect gray hole attack in MANETs on the origin of battery power. MANETs has dynamic nodes so we delivered novel way to choose cluster head by self-stabilizing election algorithm followed by MD5 algorithm for security purposes. The Dynamic cluster based intrusion revealing system to detect gray hole attack in MANET. This Architecture enhanced performance in terms of Packet delivery ratio and throughput due to dynamic cluster based IDS, associating results of existing system with proposed system, throughput of network increased, end to end delay and routing overhead less compared with existing system due to gray hole nodes in the MANET. The future work can be prolonged by using security algorithm AES and MD6 and also by including additional node to create large network by comparing multiple routing protocol in MANETs.