Biblio
The deployment and operation of global network architectures can exhibit complex, dynamic behavior and the comprehensive validation of their properties, without actually building and running the systems, can only be achieved with the help of simulations. Packet-level models are not feasible in the Internet scale, but we are still interested in the phenomena that emerge when the systems are run in their intended environment. We argue for the high-level simulation methodology and introduce a simulation environment based on aggregate models built on state-of-the-art datasets available while respecting invariants observed in measurements. The models developed are aimed at studying a clean slate name-based interdomain routing architecture and provide an abundance of parameters for sensitivity analysis and a modular design with a balanced level of detail in different aspects of the model. In addition to introducing several reusable models for traffic, topology, and deployment, we report our experiences in using the high-level simulation approach and potential pitfalls related to it.
Content distribution in the Internet places content providers in a dominant position, with delivery happening directly between two end-points, that is, from content providers to consumers. Information-Centrism has been proposed as a paradigm shift from the host-to-host Internet to a host-to-content one, or in other words from an end-to-end communication system to a native distribution network. This trend has attracted the attention of the research community, which has argued that content, instead of end-points, must be at the center stage of attention. Given this emergence of information-centric solutions, the relevant management needs in terms of performance have not been adequately addressed, yet they are absolutely essential for relevant network operations and crucial for the information-centric approaches to succeed. Performance management and traffic engineering approaches are also required to control routing, to configure the logic for replacement policies in caches and to control decisions where to cache, for instance. Therefore, there is an urgent need to manage information-centric resources and in fact to constitute their missing management and control plane which is essential for their success as clean-slate technologies. In this thesis we aim to provide solutions to crucial problems that remain, such as the management of information-centric approaches which has not yet been addressed, focusing on the key aspect of route and cache management.
The wireless network is become larger than past. So in the recent years the wireless with multiple sinks is more useful. The anonymity and privacy in this network is a challenge now. In this paper, we propose a new method for anonymity in multi sink wireless sensor network. In this method we use layer encryption to provide source and event privacy and we use a label switching routing method to provide sink anonymity in each cluster. A master sink that is a powerful base station is used to connect sinks to each other.
This paper presents the relative merits of IR and microwave sensor technology and their combination with wireless camera for the development of a wall mounted wireless intrusion detection system and explain the phases by which the intrusion information are collected and sent to the central control station using wireless mesh network for analysis and processing the collected data. These days every protected zone is facing numerous security threats like trespassing or damaging of important equipments and a lot more. Unwanted intrusion has turned out to be a growing problem which has paved the way for a newer technology which detects intrusion accurately. Almost all organizations have their own conventional arrangement of protecting their zones by constructing high wall, wire fencing, power fencing or employing guard for manual observation. In case of large areas, manually observing the perimeter is not a viable option. To solve this type of problem we have developed a wall-mounted wireless fencing system. In this project I took the responsibility of studying how the different units could be collaborated and how the data collected from them could be further processed with the help of software, which was developed by me. The Intrusion detection system constitutes an important field of application for IR and microwave based wireless sensor network. A state of the art wall-mounted wireless intrusion detection system will detect intrusion automatically, through multi-level detection mechanism (IR, microwave, active RFID & camera) and will generate multi-level alert (buzzer, images, segment illumination, SMS, E-Mail) to notify security officers, owners and also illuminate the particular segment where the intrusion has happened. This system will enable the authority to quickly handle the emergency through identification of the area of incident at once and to take action quickly. IR based perimeter protection is a proven technology. However IR-based intrusion detection system is not a full-proof solution since (1) IR may fail in foggy or dusty weather condition & hence it may generate false alarm. Therefore we amalgamate this technology with Microwave based intrusion detection which can work satisfactorily in foggy weather. Also another significant arena of our proposed system is the Camera-based intrusion detection. Some industries require this feature to capture the snap-shots of the affected location instantly as the intrusion happens. The Intrusion information data are transmitted wirelessly to the control station via multi hop routing (using active RFID or IEEE 802.15.4 protocol). The Control station will receive intrusion information at real time and analyze the data with the help of the Intrusion software. It then sends SMS to the predefined numbers of the respective authority through GSM modem attached with the control station engine.
Wireless sensor networks extend people's ability to explore, monitor, and control the physical world. Wireless sensor networks are susceptible to certain types of attacks because they are deployed in open and unprotected environments. Novel intrusion tolerance architecture is proposed in this paper. An expert intrusion detection analysis system and an all-channel analyzer are introduced. A proposed intrusion tolerance scheme is implemented. Results show that this scheme can detect data traffic and re-route it to a redundant node in the wireless network, prolong the lifetime of the network, and isolate malicious traffic introduced through compromised nodes or illegal intrusions.