Visible to the public Biblio

Filters: Keyword is signature based detection  [Clear All Filters]
2020-10-26
Samantray, Om Prakash, Tripathy, Satya Narayan, Das, Susanta Kumar.  2019.  A study to Understand Malware Behavior through Malware Analysis. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–5.
Most of the malware detection techniques use malware signatures for detection. It is easy to detect known malicious program in a system but the problem arises when the malware is unknown. Because, unknown malware cannot be detected by using available known malware signatures. Signature based detection techniques fails to detect unknown and zero-day attacks. A novel approach is required to represent malware features effectively to detect obfuscated, unknown, and mutated malware. This paper emphasizes malware behavior, characteristics and properties extracted by different analytic techniques and to decide whether to include them to create behavioral based malware signature. We have made an attempt to understand the malware behavior using a few openly available tools for malware analysis.
2020-09-18
Tanrıverdi, Mustafa, Tekerek, Adem.  2019.  Implementation of Blockchain Based Distributed Web Attack Detection Application. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1—6.
In last decades' web application security has become one of the most important case study of information security studies. Business processes are transferred to web platforms. So web application usage is increased very fast. Web-based attacks have also increased due to the increased use of web applications. In order to ensure the security of web applications, intrusion detection and prevention systems and web application firewalls are used against web based attacks. Blockchain technology, which has become popular in recent years, enables reliable and transparent sharing of data with all stakeholders. In this study, in order to detect web-based attacks, a blockchain based web attack detection model that uses the signature based detection method is proposed. The signature based detection refers to the detection of attacks by looking for specific patterns against known web based attack types, such as Structured Query Language (SQL) Injection, Cross Site Scripting (XSS), Command Injection. Three web servers were used for the experimental study. A blockchain node has been installed with the MultiChain application for each server. Attacks on web applications are detected using the signature list found in the web application as well as detected using the signature list updated on the blockchain. According to the experimental results, the attacks signature detected and defined by a web application are updated in the blockchain lists and used by all web applications.
2018-06-20
Seth, R., Kaushal, R..  2017.  Detection of transformed malwares using permission flow graphs. 2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). :17–21.

With growing popularity of Android, it's attack surface has also increased. Prevalence of third party android marketplaces gives attackers an opportunity to plant their malicious apps in the mobile eco-system. To evade signature based detection, attackers often transform their malware, for instance, by introducing code level changes. In this paper we propose a lightweight static Permission Flow Graph (PFG) based approach to detect malware even when they have been transformed (obfuscated). A number of techniques based on behavioral analysis have also been proposed in the past; how-ever our interest lies in leveraging the permission framework alone to detect malware variants and transformations without considering behavioral aspects of a malware. Our proposed approach constructs Permission Flow Graph (PFG) for an Android App. Transformations performed at code level, often result in changing control flow, however, most of the time, the permission flow remains invariant. As a consequences, PFGs of transformed malware and non-transformed malware remain structurally similar as shown in this paper using state-of-the-art graph similarity algorithm. Furthermore, we propose graph based similarity metrics at both edge level and vertex level in order to bring forth the structural similarity of the two PFGs being compared. We validate our proposed methodology through machine learning algorithms. Results prove that our approach is successfully able to group together Android malware and its variants (transformations) together in the same cluster. Further, we demonstrate that our proposed approach is able to detect transformed malware with a detection accuracy of 98.26%, thereby ensuring that malicious Apps can be detected even after transformations.