Visible to the public Biblio

Filters: Keyword is kNN algorithm  [Clear All Filters]
2022-03-08
Ma, Xiaoyu, Yang, Tao, Chen, Jiangchuan, Liu, Ziyu.  2021.  k-Nearest Neighbor algorithm based on feature subspace. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :225—228.
The traditional KNN algorithm takes insufficient consideration of the spatial distribution of training samples, which leads to low accuracy in processing high-dimensional data sets. Moreover, the generation of k nearest neighbors requires all known samples to participate in the distance calculation, resulting in high time overhead. To solve these problems, a feature subspace based KNN algorithm (Feature Subspace KNN, FSS-KNN) is proposed in this paper. First, the FSS-KNN algorithm solves all the feature subspaces according to the distribution of the training samples in the feature space, so as to ensure that the samples in the same subspace have higher similarity. Second, the corresponding feature subspace is matched for the test set samples. On this basis, the search of k nearest neighbors is carried out in the corresponding subspace first, thus improving the accuracy and efficiency of the algorithm. Experimental results show that compared with the traditional KNN algorithm, FSS-KNN algorithm improves the accuracy and efficiency on Kaggle data set and UCI data set. Compared with the other four classical machine learning algorithms, FSS-KNN algorithm can significantly improve the accuracy.
2022-02-22
Bouyeddou, Benamar, Harrou, Fouzi, Sun, Ying.  2021.  Detecting Cyber-Attacks in Modern Power Systems Using an Unsupervised Monitoring Technique. 2021 IEEE 3rd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS). :259–263.
Cyber-attacks detection in modern power systems is undoubtedly indispensable to enhance their resilience and guarantee the continuous production of electricity. As the number of attacks is very small compared to normal events, and attacks are unpredictable, it is not obvious to build a model for attacks. Here, only anomaly-free measurements are utilized to build a reference model for intrusion detection. Specifically, this study presents an unsupervised intrusion detection approach using the k-nearest neighbor algorithm and exponential smoothing monitoring scheme for uncovering attacks in modern power systems. Essentially, the k-nearest neighbor algorithm is implemented to compute the deviation between actual measurements and the faultless (training) data. Then, the exponential smoothing method is used to set up a detection decision-based kNN metric for anomaly detection. The proposed procedure has been tested to detect cyber-attacks in a two-line three-bus power transmission system. The proposed approach has been shown good detection performance.
2018-06-20
Ren, Z., Chen, G..  2017.  EntropyVis: Malware classification. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1–6.

Malware writers often develop malware with automated measures, so the number of malware has increased dramatically. Automated measures tend to repeatedly use significant modules, which form the basis for identifying malware variants and discriminating malware families. Thus, we propose a novel visualization analysis method for researching malware similarity. This method converts malicious Windows Portable Executable (PE) files into local entropy images for observing internal features of malware, and then normalizes local entropy images into entropy pixel images for malware classification. We take advantage of the Jaccard index to measure similarities between entropy pixel images and the k-Nearest Neighbor (kNN) classification algorithm to assign entropy pixel images to different malware families. Preliminary experimental results show that our visualization method can discriminate malware families effectively.