Visible to the public Biblio

Filters: Keyword is malware features  [Clear All Filters]
2020-10-26
Samantray, Om Prakash, Tripathy, Satya Narayan, Das, Susanta Kumar.  2019.  A study to Understand Malware Behavior through Malware Analysis. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–5.
Most of the malware detection techniques use malware signatures for detection. It is easy to detect known malicious program in a system but the problem arises when the malware is unknown. Because, unknown malware cannot be detected by using available known malware signatures. Signature based detection techniques fails to detect unknown and zero-day attacks. A novel approach is required to represent malware features effectively to detect obfuscated, unknown, and mutated malware. This paper emphasizes malware behavior, characteristics and properties extracted by different analytic techniques and to decide whether to include them to create behavioral based malware signature. We have made an attempt to understand the malware behavior using a few openly available tools for malware analysis.
2018-06-20
Ren, Z., Chen, G..  2017.  EntropyVis: Malware classification. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1–6.

Malware writers often develop malware with automated measures, so the number of malware has increased dramatically. Automated measures tend to repeatedly use significant modules, which form the basis for identifying malware variants and discriminating malware families. Thus, we propose a novel visualization analysis method for researching malware similarity. This method converts malicious Windows Portable Executable (PE) files into local entropy images for observing internal features of malware, and then normalizes local entropy images into entropy pixel images for malware classification. We take advantage of the Jaccard index to measure similarities between entropy pixel images and the k-Nearest Neighbor (kNN) classification algorithm to assign entropy pixel images to different malware families. Preliminary experimental results show that our visualization method can discriminate malware families effectively.