Biblio
Lately, we are facing the Malware crisis due to various types of malware or malicious programs or scripts available in the huge virtual world - the Internet. But, what is malware? Malware can be a malicious software or a program or a script which can be harmful to the user's computer. These malicious programs can perform a variety of functions, including stealing, encrypting or deleting sensitive data, altering or hijacking core computing functions and monitoring users' computer activity without their permission. There are various entry points for these programs and scripts in the user environment, but only one way to remove them is to find them and kick them out of the system which isn't an easy job as these small piece of script or code can be anywhere in the user system. This paper involves the understanding of different types of malware and how we will use Machine Learning to detect these malwares.
Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.